◀ CHAPTER 0 PRELIMINARIES ▶
◀ SECTION 0.1 Real Numbers, Estimation, and Logic ▶
Concepts Review
- Numbers that can be written as the ratio of two integers are called ______. (rational numbers)
- Between any two real numbers, there is another real number. This is what it means to say that the real numbers are ______. (dense)
- The contrapositive of "If P then Q" is ______. (if not Q then not P)
- Axioms and definitions are taken for granted, but ______ require proof. (theorems)
Problem Set 0.1, Number 1 - 42.
In Problems 1-16, simplify as much as possible. Be sure to remove all parentheses and reduce all fractions.
- 4 – 2 (8 – 11) + 6Answer:4 – 2 (8 – 11) + 6= 4 – 2 (–3) + 6= 4 + 6 + 6= 16
- 3 [2 – 4 (7 – 12)]Answer:3 [2 – 4 (7 – 12)]= 3 [2 – 4(–5)]= 3 [2 + 20]= 3 (22)= 66
- –4 [ 5 (–3 + 12 – 4) + 2 (13 – 7)Answer:–4 [ 5 (–3 + 12 – 4) + 2 (13 – 7)= –4 [5(5) + 2(6)]= –4 [25 + 12]= –4 (37)= –148
- 5 [–1 (7 + 12 – 16) + 4] + 2Answer:5 [–1 (7 + 12 – 16) + 4] + 2= 5 [–1 (3) + 4] + 2= 5 (–3 + 4) + 2= 5 (1) + 2= 5 + 2= 7
- (5/7) – (1/13)Answer:(5/7) – (1/13)= (65/91) – (7/91)= (58/91)
- (2/(4 – 7)) + (3/21) – (1/6)Answer:(2/(4 – 7)) + (3/21) – (1/6)= (3/–3) + (3/21) – (1/6)= –(42/42) + (6/42) – (7/42)= –(43/42)
- (1/3) [½ (¼ – (1/3)) + (1/6)]Answer:(1/3) [½ (¼ – (1/3)) + (1/6)]= (1/3) [½ ((3– 4)/12) + (1/6)]= (1/3) [½ (–(1/12)) + (1/6)]= (1/3) [–(1/24) + (4/24)]= (1/3) (3/24)= 1/24
- (–1/3) [(2/5) – ½ ((1/3) – (1/5))]Answer:(–1/3) [(2/5) – ½ ((1/3) – (1/5))]= (–1/3) [(2/5) – ½ (2/15)]= (–1/3) [(2/5) – (1/15)]= (–1/3) [(6/15) – (1/15)]= (–1/3) (5/15)= –1/9
- (14/21) [2/(5 – (1/3))]2Answer:(((14/21) [2/(5 – (1/3))]2= (14/21) [2/(14/3)]2= (14/21) [6/14]2= (14/21) [3/7]2= (2/3) [9/49]= 6/49
- [(2/7) – 5] / [1 – (1/7)]Answer:[(2/7) – 5] / [1 – (1/7)]= [(2/7) – (35/7)] / [(7/7) – (1/7)]= (–33/7) / (6/7)= – (33/6)= – (11/2)
- [(11/7) – (12/21)] / [(11/7) + (12/21)]Answer:[(11/7) – (12/21)] / [(11/7) + (12/21)]= [(11/7) – (4/7)] / [(11/7) + (4/7)]= (7/7) / (15/7)= 7/15
- [(½) – (¾) + (7/8)] / [(½) + (¾) – (7/8)]Answer:[(½) – (¾) + (7/8)] / [(½) + (¾) – (7/8)]= [(4/8) – (6/8) + (7/8)] / [(4/8) + (6/8) – (7/8)]= (5/8) / (3/8)= 5/3
- 1 – [1 / (1 + (½))]Answer:1 – [1 / (1 + (½))]= 1 – [1 / (3/2)]= 1 – (2/3)= (3/3) – (2/3)= 1/3
- 2 + [3 / (1 + (5/2))]Answer:2 + [3 / (1 + (5/2))]= 2 + [3 / ((2/2) + (5/2))]= 2 + [3 / (7/2)]= 2 + (6/7)= (14/7) + (6/7)= 20/7
- (√5 + √3) (√5 – √3)Answer:(√5 + √3) (√5 – √3)= (√5)2 – (√3)2= 5 – 3= 2
- (√5 – √3)2Answer:(√5 – √3)2= (√5)2 – 2 (√5)(√3) + (√3)2= 5 – 2 (√15) + 3= 8 – 2 (√15)
- (3x – 4) (x + 1)Answer:(3x – 4) (x + 1)= 3x2 + 3x – 4x – 4= 3x2 – x – 4
- (2x – 3)2Answer:(2x – 3)2= (2x – 3) (2x – 3)= 4x2 – 6x – 6x + 9= 4x2 – 12x + 9
- (3x – 9) (2x + 1)Answer:(3x – 9) (2x + 1)= 6x2 + 3x – 18x – 9= 6x2 – 15x – 9
- (4x – 11) (3x – 7)Answer:(4x – 11) (3x – 7)= 12x2 – 28x – 33x + 77= 12x2 – 61x + 77
- (3t2 – t + 1)2Answer:(3t2 – t + 1)2= (3t2 – t + 1) (3t2 – t + 1)= 9t4 – 3t3 + 3t2 – 3t3 + t2 – t + 3t2 – t + 1= 9t4 – 6t3 + 7t2 – 2t + 1
- (2t + 3)3Answer:(2t + 3)3= (2t + 3) (2t + 3) (2t + 3)= (4t2 + 12t + 9) (2t + 3)= 8t3 + 12t2 + 24t2 + 36t + 18t + 27= 8t3 + 36t2 + 54t + 27
- (x2 – 4) / (x – 2)Answer:(x2 – 4) / (x – 2)= [(x + 2) (x – 2)] / (x – 2)= x + 2, x ≠ 2
- (x2 – x – 6) / (x – 3)Answer:(x2 – x – 6) / (x – 3)= [(x – 3) (x + 2)] / (x – 3)= x + 2, x ≠ 3
- (t2 – 4t – 21) / (t + 3)Answer:(t2 – 4t – 21) / (t + 3)= [(t + 3) (t – 7)] / (t + 3)= (t – 7), t ≠ –3
- (2x – 2x2) / (x3 – 2x2 + x)Answer:(2x – 2x2) / (x3 – 2x2 + x)= 2x (1 – x) / [x (x2 – 2x + 1)]= –2x (x – 1) / [x (x – 1) (x – 1)]= – [2/(x – 1)]
- [12 / (x2 + 2x)] + [4/x] + [2 / (x + 2)]Answer:[12 / (x2 + 2x)] + [4 / x] + [2 / (x + 2)]= [12 / (x (x + 2))] + [(4 (x + 2)) / (x (x + 2))] + [2x / (x (x + 2))]= (12 + 4x + 8 + 2x) / (x (x + 2))= (6x + 20) / (x (x + 2))= [2 (3x + 10)] / (x (x + 2))
- [2 / (6y – 2)] + [y / (9y2 – 1)]Answer:[2 / (6y – 2)] + [y / (9y2 – 1)]= [2 / (2 (3y – 1))] + [y / ((3y + 1) (3y – 1))]= [(2 (3y + 1)) / (2 (3y + 1) (3y – 1))] + [2y / (2 (3y + 1) (3y – 1))]= (6y + 2 + 2y) / [2 (3y + 1) (3y – 1)]= (8y + 2) / [2 (3y + 1) (3y – 1)]= [2 (4y + 1)] / [2 (3y + 1) (3y – 1)]= (4y + 1) / [(3y + 1) (3y – 1)]
- Find the value of each of the following; if undefined, say so.(a) 0 · 0Answer:0(b) 0/0Answer:undefined(c) 0/17Answer:0(d) 3/0Answer:undefined(e) 05Answer:0(f) 170Answer:1
- Show that division by 0 is meaningless as follows: Suppose that a ≠ 0. If a/0 = b, then a = 0 · b = 0, which is a contradiction. Now find a reason why 0/0 is also meaningless.Answer:If 0/0 = a, then 0 = 0 · a, but this is meaningless because a could be any real number. No single value satisfies 0/0 = a.
- 1/12Answer:12 /¯1.000 = 0.0839 6 –4036 –4
- 2/7Answer:7 /¯2.000000 = 0.2857141 4 –6056 –4035 –5049 –107 –3028 –2
- 3/21Answer:21 /¯3.000000 = 0.14285721 –9084 –6042 –120105 –150147 –3
- 5/17Answer:17 /¯5.000000… = 0.294117 → 0.294117647058823534 –160153 –7068 –2017 –3017 –130119 –11⁝
- 11/3Answer:3 /¯11.0 = 3.69 –2018 –2
- 11/13Answer:13 /¯11.000000 = 0.846153104 –6052 –8078 –2013 –7065 –5039 –11
- 0.123123123…Answer:x = 0.123123123…1000x = 123.123123…x = 0.123123… –999x = 123x = 123/999= 41/333
- 0.217171717…Answer:x = 0.217171717…1000x = 217.171717…10x = 2.171717… –990x = 215x = 215/990= 43/198
- 2.56565656…Answer:x = 2.56565656…100x = 256.565656…x = 2.565656… –99x = 254x = 254/99
- 3.929292…Answer:x = 3.929292…100x = 392.929292…x = 3.929292… –99x = 389x = 389/99
- 0.199999…Answer:x = 0.199999…100x = 19.99999…10x = 1.99999… –90x = 18x = 18/90= 1/5
- 0.399999…Answer:x = 0.399999…100x = 39.99999…10x = 3.99999… –90x = 36x = 36/90= 2/5
In Problems 17-28, perform the indicated operations and simplify.
In Problems 31-36, change each rational number to a decimal by performing long division.
In Problem 37-42, change each repeating decimal to a ratio of two ontegers (see Example 1).
Demikian soal serta penjelasan untuk pembahasan soal dari Buku Calculus 9th Purcell Chapter 0 yang nomor 1-42. Untuk nomor selanjutnya, di postingan selanjutnya. Ini dapat dijadikan bahan untuk belajar 👍. Semoga tulisan ini bermanfaat. Amiiinnn 👐👐👐.
Jangan lupa untuk SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar atau masukan serta share postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment