◀ CHAPTER 0 PRELIMINARIES ▶
◀ SECTION 0.2 Inequalities And Absolute Values ▶
Problem Set 0.2, Number 64 – 78.
- Use the result of Problem 63 to show that
- Use the properties of the absolute value to show that each of the following is true.
- |a – b| ≤ |a| + |b|
- |a – b| ≥ |a| – |b|
- |a + b + c| ≤ |a| + |b| + |c|
- |a – b| = |a + (–b)| ≤ |a| + |–b| = |a| + |b|
- |a – b| ≥ ||a| – |b|| ≥ |a| – |b| Use Property 4 of absolute values.
- |a + b + c| = |(a + b) + c| ≤ |a + b| + |c|, so |a + b + c| ≤ |a| + |b| + |c|
- Use the Triangle Inequality and the fact that 0 < |a| < |b| ⇒ 1/|b| < 1/|a| to establish the following chain of inequalities.
- Show that (see Problem 66)
- Show that
- Show that
- Show each of the following
- x < x2 for x < 0 or x > 1
- x2 < x
- x<x2x – x2<0x(1 – x)<0x<0 or x > 1
- x2<xx2 – x<0x(x – 1)<00<x < 1
- Show that a ≠ 0 ⇒ a2 + 1/a2 ≥ 2. Hint: Consider (a – 1/a2).
- The number ½(a + b) is called the average, or arithmetic mean, of a and b. Show that the arithmetic mean of two numbers is between the two numbers; that is, prove that
- The number √ab is called the geometric mean of two positive numbers a and b. Prove that
- For two positive numbers a and b, prove that
- Show that, among all rectangles with given perimeter p. the square has the largest area. Hint: If a and b denote the lengths of adjacent sides of a rectangle of perimeter p, then the area is ab, and for the square the area is a2 = [(a + b)/2]2. Now see Problem 74.
- Solve 1 + x + x2 + x3 + ... + x99 ≤ 0
- The formula 1/R = 1/R1 + 1/R2 + 1/R3 gives the total resistance R in an electric circuit due to three resistances, R1, R2, and R3, connected in parallel. If 10 ≤ R1 ≤ 20, 20 ≤ R2 ≤ 30, and 30 ≤ R3 ≤ 40, find the range of values for R.
- The radius of a sphere is measured to be about 10 inches. Determine a tolerance δ in this measurement that will ensure an error of less than 0.01 square inch in the calculated value of the surface area of the sphere.
0 < a < b ⇒ √a < √b
Answer:
0 < a < b ⇒ a ⇒ (√a)2 and b ⇒ (√b)2, so (√a)2 < (√b)2, and, by Problem 63, |√a| < |√b| ⇒ √a < √b.
Answer:
|
1
|
–
|
1
|
|
≤
|
1
|
+
|
1
|
≤
|
1
|
+
|
1
|
x2 + 3
|
|x|
+ 2
|
x2 + 3
|
|x|
+ 2
|
3
|
2
|
Answer:
|
1
|
–
|
1
|
|
=
|
|
1
|
+
|
⌈
|
–
|
1
|
⌉
|
x2 + 3
|
|x|
+ 2
|
x2 + 3
|
⌊
|
|x|
+ 2
|
⌋
|
|
|
|
|
|
≤
|
|
1
|
|
+
|
|
–
|
1
|
|
|
|
x2 + 3
|
|x|
+ 2
|
|
|
|
|
|
|
=
|
|
1
|
|
+
|
|
1
|
|
|
|
x2 + 3
|
|x|
+ 2
|
|
|
|
|
|
|
=
|
1
|
+
|
1
|
|
|
x2 + 3
|
|x|
+ 2
|
by the Triangular Inequality, and since
x2 + 3 > 0, |x + 2 > 0 ⇒ 1/x2 + 3 > 0, 1/|x| + 2 > 0.
x2 + 3 ≥ 3 and |x| + 2 ≥ 2, so
1/x2 + 3 ≤ 1/3 and 1/|x| + 2 ≤ 1/2
1/x2 + 3 + 1/|x| + 2 ≤ 1/3 + 1/2
|
x – 2
|
|
≤
|
|x|
+ 2
|
x2 + 9
|
9
|
Answer:
|
x – 2
|
|
=
|
|
x + (–2)
|
|
x2 + 9
|
x2 + 9
|
|
x – 2
|
|
≤
|
|
x
|
|
+
|
|
–2
|
|
x2 + 9
|
x2 + 9
|
|
x2 + 9
|
|
|
x – 2
|
|
≤
|
|
|x|
|
|
+
|
|
2
|
|
x2 + 9
|
x2 + 9
|
|
x2 + 9
|
|
|
x – 2
|
|
=
|
|
|x|
+ 2
|
x2 + 9
|
x2 + 9
|
Since x2 + 9 ≥ 9,
|
1
|
|
≤
|
|
1
|
x2 + 9
|
9
|
|
|x|
+ 2
|
|
≤
|
|
|x|
+ 2
|
|
x2 + 9
|
9
|
|
x – 2
|
|
≤
|
|
|x|
+ 2
|
|
x2 + 9
|
9
|
|x|
≤ 2 ⇒
|
|
x2 + 2x + 7
|
|
≤ 15
|
x2 + 1
|
Answer:
|x|
≤ 2 ⇒ |x2
+ 2x + 7|
|
≤
|
|x2|
+ |2x| + 7
|
|
≤
|
4 + 4 + 7 = 15
|
and
|x2 + 1| ≥ 1 so
|
1
|
≤ 1.
|
x2 + 1
|
Thus,
|
|
x2 + 2x + 7
|
|
=
|
|x2
+ 2x + 7|
|
|
1
|
|
x2 + 1
|
x2 + 1
|
|||||||
|
|
|
|
≤
|
15 · 1 = 15
|
|
|
|
|
|
|x| ≤ 1 ⇒ |x4 + 1/2 · x3 + 1/4 · x2 + 1/8 · x + 1/16| < 2
Answer:
|x4 + 1/2 · x3 + 1/4 · x2 + 1/8 · x + 1/16|
≤ |x4| + 1/2 · |x3| + 1/4 · |x2| + 1/8 · |x| + 1/16
≤ 1 + 1/2 + 1/4 + 1/8 + 1/16 since |x ≤ 1.
So |x4 + 1/2 · x3 + 1/4 · x2 + 1/8 · x + 1/16| ≤ 1.9375 < 2.
Answer:
Answer:
a ≠ 0 ⇒
0 ≤ (a – 1/a)2 = a2 – 2 + 1/a2
so, 2 ≤ a2 + 1/a2 or a2 + 1/a2 ≥ 2.
a < b ⇒ a <
|
a + b
|
< b
|
2
|
Answer:
a < b
a + a < a + b and a + b < b + b
2a < a + b < 2b
a < a + b/2 < b
0 < a < b ⇒ a < √ab < b
Answer:
0 < a < b
a2 < ab and ab < b2
a2 < ab < b2
a < √ab < b
√ab ≤ ½(a + b)
This is the simplest version of a famous inequality called the geometric mean-arithmetic mean inequality.
Answer:
√ab ≤ ½ (a + b) ⇔ ab ≤ ¼ (a2 + 2ab + b2)
⇔ 0 ≤ ¼ · a2 – ½ · ab + ¼ · b2 = ¼ (a2 – 2ab + b2)
⇔ 0 ≤ ¼ (a – b)2 which is always true.
Answer:
For a rectangle the area is ab, while for a square the area is a2 = (a + b/2)2. From Problem 74, √ab ≤ ½ (a + b) ⇔ ab ≤ (a + b/2)2 so the square has the largest area.
Answer:
1 + x + x2 + x3 + ... + x99 ≤ 0;
(–∞, –1]
Answer:
1/R ≤ 1/10 + 1/20 + 1/30
1/R ≤ 6 + 3 + 2/60
1/R ≤ 11/60
R ≥ 60/11
1/R ≥ 1/20 + 1/30 + 1/40
1/R ≥ 6 + 4 + 3/120
R ≤ 120/13
Thus, 60/11 ≤ R ≤ 120/13
Answer:
A = 4π · r2; A = 4π (10)2 = 400π
|4π · r2 – 400π| < 0.01
4π |r2 – 100| < 0.01
|r2 – 100| < 0.01/4π
– 0.01/4π < r2 – 100 < 0.01/4π
√[100 – 0.01/4π] < r < √[100 + 0.01/4π]
δ ≈ 0.00004 in
Demikian Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - 0.2 Number 64 - 78. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang aplikasi yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment