Kunci Jawaban dan Pembahasan Soal || Buku Calculus 9th Purcell Chapter 0 - 0.2 Number 35 – 63

Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 Section 0.2

CHAPTER 0 PRELIMINARIES

SECTION 0.2 Real Numbers, Estimation, and Logic

Problem Set 0.2, Number 35 - 63.
    In Problems 35–44, find the solution sets of the given inequalities.
  1. |x – 2| ≥ 5
  2. Answer:
    |x – 2| ≥ 5
    x – 2 ≤ –5 or x – 2 ≥ 5
    x ≤ –3 or x ≥ 7
    (–∞, –3] ∪ [7, ∞)

  3. |x + 2| < 1
  4. Answer:
    |x + 2| < 1
    –1 < x + 2 < 1
    –1 < x < –3
    (–3, –1)

    Calculus 9th Purcell Chapter 0

  5. |4x + 5| ≤ 10
  6. Answer:
    |4x + 5| ≤ 10
    –10 ≤ 4x + 5 ≤ 10
    –15 ≤ 4x ≤ 5
    -15/4x5/4;
    [-15/4, 5/4]

  7. |2x – 1| > 2
  8. Answer:
    |2x – 1| > 2
    2x – 1 < 2 or 2x – 1 > 2
    2x < –1 or 2x > 3;
    x < –1/2 or x > 3/2, (–∞, –1/2) ∪ (3/2, ∞)

  9. |2x/7 – 5| ≥ 7
  10. Answer:
    |2x/7 – 5| ≥ 7
    2x/7 – 5 ≤ –7 or 2x/7 – 5 ≥ 7
    2x/7 ≤ –2 or 2x/7 ≥ 12
    x ≤ –7 or x ≥ 42;
    (–∞, –7] ∪ [42, ∞)

  11. |x/4 + 1| < 1
  12. Answer:
    |x/4 + 1| < 1
    –1 < x/4 + 1 < 1
    –2 < x/4 < 0;
    –8 < x < 0; (–8, 0)

  13. |5x – 6| > 1
  14. Answer:
    |5x – 6| > 1
    5x – 6 < –1 or 5x – 6 > 1
    5x < 5 or 5x > 7
    x < 1 or x > 7/5; (–∞, 1) ∪ (7/5, ∞)

  15. |2x – 7| > 3
  16. Answer:
    |2x – 7| > 3
    2x – 7 < –3 or 2x – 7 > 3
    2x < 4 or 2x > 10
    x < 2 or x > 5; (–∞, 2) ∪ (5, ∞)

  17. |1/x – 3| > 6
  18. Answer:
    |1/x – 3| > 6
    1/x – 3 < –6 or 1/x – 3 > 6
    1/x + 3 < 0 or 1/x – 9 > 0
    1 + 3x/x < 0 or 1 – 9x/x > 0;
    (–1/3, 0) ∪ (0, 1/9)

  19. |2 + 5/x| > 1
  20. Answer:
    |2 + 5/x| > 1
    2 + 5/x < –1 or 2 + 5/x > 1
    3 + 5/x < 0 or 1 + 5/x > 0
    3x + 5/x < 0 or x + 5/x > 0;
    (–∞, –5) ∪ (–5/3), 0) ∪ (0, ∞)

    In Problems 45–48, solve the given quadratic inequality using the Quadratic Formula.
  21. x2 – 3x – 4 ≥ 0
  22. Answer:
    x2 – 3x – 4 ≥ 0;
    x = 3±√[(–3)2 – 4(1)(–4)]/2(1)
    x = 3±√5/2
    x = –1,4
    (x + 1)(x – 4) = 0; (–∞, –1] ∪ [4, ∞)

  23. 3x2 + 17x – 6 > 0
  24. Answer:
    3x2 + 17x – 6 > 0
    x = –17±√[(17)2 – 4(3)(–6)]/2(3)
    x = –17±19/6
    x = –6,1/3
    (3x – 1)(x + 6) > 0; (–∞, –6] ∪ [1/3, ∞)

  25. x2 – 4x + 4 ≤ 0
  26. Answer:
    x2 – 4x + 4 ≤ 0
    x = 4±√[(–4)2 – 4(1)(4)]/2(1)
    x = 2
    (x – 2)(x – 2) ≤ 0; x = 2

  27. 14x2 + 11x – 15 ≤ 0
  28. Answer:
    14x2 + 11x – 15 ≤ 0
    x = –11±√[(11)2 – 4(14)(–15)]/2(14)
    x = –11±31/28
    x = –3/2,5/7
    (x + 3/2)(x5/7) ≤ 0; [–3/2,5/7]

    In Problem 49–52, show that the indicated implication is thue.
  29. |x – 3| < 0.5 ⇒ |5x – 15| < 2.5
  30. Answer:
    |x – 3| < 0.5 ⇒ 5|x – 3| < 5(0.5) < ⇒ |5x – 15| < 2.5

  31. |x + 2| < 0.3 ⇒ |4x + 8| < 1.2
  32. Answer:
    |x + 2| < 0.3 ⇒ 4|x + 2| < 4(0.3) ⇒ |4x + 8| < 1.2

  33. |x – 2| < ɛ/6 ⇒ |6x – 12| < ɛ
  34. Answer:
    |x – 2| < ɛ/6 ⇒ 6|x – 2| < ɛ ⇒ |6x – 12| < ɛ

  35. |x + 4| < ɛ/2 ⇒ |2x + 8| < ɛ
  36. Answer:
    |x + 4| < ɛ/2 ⇒ 2|x + 4| < ɛ ⇒ |2x + 8| < ɛ

    In Problems 53–56, find δ (depending on ɛ) so that the given implication is true.
  37. |x – 5| < δ ⇒ |3x – 15| < ɛ
  38. Answer:
    |3x – 15| < ɛ ⇒ |3(x – 5)| < ɛ
       ⇒ 3|x – 5| < ɛ
       ⇒ |x – 5| < ɛ/3; δ = ɛ/3

  39. |x – 2| < δ ⇒ |4x – 8| < ɛ
  40. Answer:
    |4x – 8| < ɛ ⇒ |4(x – 2)| < ɛ
       ⇒ 4|x – 2| < ɛ
       ⇒ |x – 2| < ɛ/4; δ = ɛ/4


  41. |x + 6| < δ ⇒ |6x + 36| < ɛ
  42. Answer:
    |6x + 36| < ɛ ⇒ |6(x + 6)| < ɛ
       ⇒ 6|x + 6| < ɛ
       ⇒ |x + 6| < ɛ/6; δ = ɛ/6

  43. |x + 5| < δ ⇒ |5x + 25| < ɛ
  44. Answer:
    |5x + 25| < ɛ ⇒ |5(x + 5)| < ɛ
       ⇒ 5|x + 5| < ɛ
       ⇒ |x + 5| < ɛ/5; δ = ɛ/5

  45. On a lathe, you are to turn out a isk (this right circular cylinder) of curcumference 10 inches. This is done by continually measuring the diameter as you make the disk smaller. How closely must you measure the diameter if you can tolerate an error of most 0.02 inch in the circumference?
  46. Answer:
    C = πd
    |C – 10| ≤ 0.02
    |πd – 10| ≤ 0.02
    |π(d10/π)| ≤ 0.02
    |d10/π| ≤ 0.02/π ≈ 0.0064
    We must measure the diameter to an accuracy of 0.0064 in.

  47. Fahrenheit temperatures and Celsius temperatures are related by the formula C = 5/9 (F – 32). An experiment requires that a solution be kept at 50°C with an error of at most 3% (or 1.5°). You have only a Fahrenheit thermometer. What error are you allowed on it?
  48. Answer:
    |C – 50| ≤ 1.5, |5/9(F – 32)– 50| ≤ 1.5;
    |5/9(F – 32)– 90| ≤ 1.5
    |F – 122| ≤ 2.7
    We are allowed an error of 2.7° F.

    In Problems 59–62, solve the inequalities.
  49. |x – 1| < 2|x – 3|
  50. Answer:
    |x – 1|
    < 
    2|x – 3|
    |x – 1|
    < 
    |2x – 6|
    (x – 1)2
    < 
    (2x – 6)2
     x2 – 2x + 1
    < 
    4x2 – 24x + 36
    3x2 – 22x + 35
    > 
    0
    (3x – 7) (x – 5)
    > 
    0 ;
    ( –∞, 7/3 )
    (5, ∞)

  51. |2x – 1| ≥ |x + 1|
  52. Answer:
    |2x – 1|
    |x + 1|
    (2x – 1)2
    (x + 1)2
    4x2 – 4x + 1
    x2 + 2x + 1
    3x2 – 6x
    0
    3x (x – 2)
    0
    ( –∞, 0]
    [2, ∞)

  53. 2|2x – 3| < |x + 10|
  54. Answer:
    2|2x – 3|
    < 
    |x + 10|
    |4x – 6|
    < 
    |x + 10|
    (4x – 6)2
    < 
    (x + 10)2
    16x2 – 48x + 36
    < 
    x2 + 20x + 100
    15x2 – 68x – 64
    < 
    0
    (5x + 4) (3x – 16)
    < 
    0;
    (–4/5, 16/3)
     
     

  55. |3x – 1| < 2|x + 6|
  56. Answer:
    |3x – 1|
    < 
    2|x + 6|
    |3x – 1|
    < 
    |2x + 12|
    (3x – 1)2
    < 
    (2x + 12)2
    9x2 – 6x + 1
    < 
    4x2 + 48x + 144
    15x2 – 54x – 143
    < 
    0
    (5x + 11) (x – 13)
    < 
    0;
    (–11/5, 13)
     
     

  57. Prove that |x| < |y| ⇔ x2 < y2 by giving a reason for each of these steps:
  58. |x| < |y|
    |x||x| ≤ |x||y| and |x||y| < |y||y|
     
    |x|2 < |y|2
     
    x2 < y2
    Conversely,
    x2 < y2
    |x|2 < |y|2
     
    |x|2 – |y|2 < 0
     
    (|x| – |y|)(|x| + |y|) < 0
     
    |x| – |y| < 0
     
    |x| < |y|
    Answer:
    |x| < |y|
    |x||x| ≤ |x||y| and |x||y| < |y||y|
     
     
    Order property: x < y xz < yz when z is positive.
     
    |x|2 < |y|2
     
     
    Transitivity
     
    x2 < y2
     
     
    (|x|2 = x2)
    Conversely,
     
    x2 < y2
    |x|2 < |y|2
     
     
    (x2 = |x|2)
     
    |x|2 – |y|2 < 0
     
     
    Subtract |y|2 from each side.
     
    (|x| – |y|)(|x| + |y|) < 0
     
     
    Factor the difference of two squares.
     
    |x| – |y| < 0
     
     
    This is the only factor that can be negative.
     
    |x| < |y|
     
     
    Add |y| to each side.

Demikian soal serta kunci jawaban dan penjelasan untuk Pembahasan Latihan Buku Calculus 9th Purcell Chapter 0 - 0.2 Number 35 - 63. Untuk pembahasan selanjutnya, di postingan selanjutnya juga ya. Ini dapat dijadikan bahan untuk belajar 👍. Semoga tulisan ini bermanfaat. Amiiinnn 👐👐👐.
Jangan lupa untuk SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar atau masukan serta share postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆

Ahmad Qolfathiriyus Firdaus

We are bantalmateri.com that utilizes the internet and digital media in delivering material, questions and even the form of discussion. In the current generation, online learning methods (commonly called daring) are considered closer to students who are very integrated and difficult to separate from technology. The emergence of technology has also facilitated the implementation of schools even though students and educators alike have to adapt.

No comments:

Post a Comment