Kunci Jawaban dan Pembahasan Soal || Buku Calculus 9th Purcell Chapter 0 - 0.2 Number 1 – 34

Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 Section 0.2

CHAPTER 0 PRELIMINARIES

SECTION 0.2 Inequalities And Absolute Values


Concepts Review
  1. The set {x: –1 ≤ x < 5} is written in interval notation as __________ and the set {x: x ≤ –2} is written as __________.
  2. Answer:
    [–1, 5); (–∞, –2]
  3. If a/b < 0, then either a < 0 and __________ or a > 0 and __________.
  4. Answer:
    b > 0; b < 0
  5. Which of the following are always true?
  6. (a) |–x| = x
    (b) |x|2 = x2
    (c) |xy| = |x| |y|
    (d) √(x2) = x
    Answer:
    (b) and (c)
  7. The inequality |x – 2| ≤ 3 is equivalent to __________ ≤ x ≤ __________.
  8. Answer:
    –1 ≤ x ≤ 5

Calculus 9th Purcell Chapter

Problem Set 0.2, Number 1 - 42.
  1. Show each of the following intervals on the real line.
  2. (a) [–1,1]
    (b) (–4, 1]
    (c) (–4, 1)
    (d) [1, 4]
    (e) [–1, ∞)
    (f) (–∞, 0]
    Answer:
    (a)
    Calculus 9th Purcell Chapter
    (b)
    Calculus 9th Purcell Chapter
    (c)
    Calculus 9th Purcell Chapter
    (d)
    Calculus 9th Purcell Chapter
    (e)
    Calculus 9th Purcell Chapter
    (f)
    Calculus 9th Purcell Chapter
     
  3. Use the notation of Problem 1 to describe the gollowing intervals.
  4. (a)
    Calculus 9th Purcell Chapter
    (b)
    Calculus 9th Purcell Chapter
    (c)
    Calculus 9th Purcell Chapter
    (d)
    Calculus 9th Purcell Chapter
    Answer:
    (a) (2, 7)
    (b) [–3, 4)
    (c) (–∞, –2]
    (d) [–1, 3]
     

    In each of Problems 3-26, express the solution set of the given inequality in interval natation and sketch its graph.
  5. x – 7 < 2x – 5 
  6. Answer:
    x – 7 < 2x – 5 
    –2 < x; (–2, ∞) 
    Calculus 9th Purcell Chapter
     
  7. 3x – 5 < 4x – 6 
  8. Answer:
    3x – 5 < 4x – 6 
    1 < x; (1, ∞)
    Calculus 9th Purcell Chapter
     
  9. 7x – 2 ≤ 9x + 3 
  10. Answer:
    7x – 2 ≤ 9x + 3 
    –5 ≤ 2x 
    x ≥ –5/2; [–5/2 ,∞)  
    Calculus 9th Purcell Chapter
     
  11. 5x – 3 > 6x – 4 
  12. Answer:
    5x – 3 > 6x – 4
    1 > x; (–∞,1)
    Calculus 9th Purcell Chapter
     
  13. –4 < 3x + 2 < 5 
  14. Answer:
    –4 < 3x + 2 < 5 
    –6 < 3x < 3 
    –2 < x < 1; (–2,–1) 
    Calculus 9th Purcell Chapter
     
  15. –3 < 4x – 9 < 11 
  16. Answer:
    –3 < 4x – 9 < 11 
    6 < 4x < 20 
    3/2 < x < 5; (3/2 ,5) 
    Calculus 9th Purcell Chapter
     
  17. –3 < 1 – 6x ≤ 4 
  18. Answer:
    –3 < 1 – 6x ≤ 4 
    –4 < –6x ≤ 3 
    2/3 > x ≥ –½; [–½, 2/3) 
    Calculus 9th Purcell Chapter
     
  19. 4 < 5 – 3x < 7 
  20. Answer:
    4 < 5 – 3x < 7 
    –1 < –3x < 2 
    1/3 > x < –2/3 ; (–2/3 , 1/3) 
    Calculus 9th Purcell Chapter
     
  21. x2 + 2x – 12 < 0 
  22. Answer:
    x2 + 2x – 12 < 0 
    x = –2±√[(2)2 – 4(1)(–12)]/2(1)
    x = –2±√52/2
    x = –1±√13
    [x–(–1+√13)][x–(–1-√13)] < 0; 
    (–1-√13,–1+√13)
    Calculus 9th Purcell Chapter
     
  23. x2 – 5x – 6 > 0 
  24. Answer:
    x2 – 5x – 6 > 0 
    (x + 1)(x – 6) > 0;
    (–∞,–1) ∪ (6,∞)
    Calculus 9th Purcell Chapter
     
  25. 2x2 + 5x – 3 > 0 
  26. Answer:
    2x2 + 5x – 3 > 0 
    (–∞,–3) ∪ (½,∞)
    Calculus 9th Purcell Chapter
     
  27. 4x2 – 5x – 6 < 0 
  28. Answer:
    4x2 – 5x – 6 < 0 
    (4x + 3)(x – 2) < 0 ; (–3/4 ,2)
    Calculus 9th Purcell Chapter
     
  29. x + 4/x – 3 ≤ 0 
  30. Answer:
    x + 4/x – 3 ≤ 0; [–4, 3) 
    Calculus 9th Purcell Chapter
     
  31. 3x – 2/x – 1 ≥ 0 
  32. Answer:
    3x – 2/x – 1 ≥ 0; (–∞, 2/3] ∪ (1,∞)
    Calculus 9th Purcell Chapter
     
  33. 2/x < 5 
  34. Answer:
    2/x < 5 
    2/x – 5 < 0 
    2 – 5x/x < 0; 
    (–∞,0) ∪ (2/5 ,∞)
    Calculus 9th Purcell Chapter
     
  35. 7/4x ≤ 7 
  36. Answer:
    7/4x ≤ 7 
    7/4x – 7 ≤ 0 
    7 – 28x/4x ≤ 0 
    (–∞,0) ∪ [1/4 ,∞)
    Calculus 9th Purcell Chapter
     
  37. 1/3x – 2 ≤ 4 
  38. Answer:
    1/3x – 2 ≤ 4 
    1/3x – 2 – 4 ≤ 0 
    1 – 4(3x – 2)/3x – 2 ≤ 0 
    9 – 12x/3x – 2 ≤ 0; (–∞, 2/3) ∪ [3/4 ,∞) 
    Calculus 9th Purcell Chapter
     

  39. 3/x + 5 > 2 
  40. Answer:
    3/x + 5 > 2 
    3/x + 5 – 2 > 0 
    3 – 2(x + 5)/x + 5 > 0 
    –2x – 7/x + 5 > 0; (–5,–7/2) 
    Calculus 9th Purcell Chapter
     
  41. (x + 2)(x – 1)(x – 3) > 0 
  42. Answer:
    (x + 2)(x – 1)(x – 3) > 0 
    (x + 2)(x – 1)(x – 3) > 0; (–2, 1) ∪ (3, 8) 
    Calculus 9th Purcell Chapter
     
  43. (2x + 3)(3x – 1)(x – 2) < 0 
  44. Answer:
    (2x + 3)(3x – 1)(x – 2) < 0 
    (2x + 3)(3x – 1)(x – 2) < 0; (–∞, –3/2) ∪ (1/3, 2) 
    Calculus 9th Purcell Chapter
     
  45. (2x – 3)(x – 1)2(x – 3) ≥ 0 
  46. Answer:
    (2x – 3)(x – 1)2(x – 3) ≥ 0 
    (2x – 3)(x – 1)2(x – 3) ≥ 0; (–∞, –3/2] ∪ [3,∞) 
    Calculus 9th Purcell Chapter
     
  47. (2x – 3)(x – 1)2(x – 3) > 0 
  48. Answer:
    (2x – 3)(x – 1)2(x – 3) > 0; 
    (–∞,1) ∪ (1, 3/2) ∪ (3,∞)
    Calculus 9th Purcell Chapter
     
  49. x3 – 5x2 – 6x < 0 
  50. Answer:
    x3 – 5x2 – 6x < 0 
    x(x2 – 5x – 6) < 0 
    x(x + 1)(x – 6) < 0 
    (–∞,–1) ∪ (0, 6)
    Calculus 9th Purcell Chapter
     
  51. x3x2x + 1 > 0 
  52. Answer:
    x3x2x + 1 > 0 
    (x2 – 1)(x – 1) > 0 
    (x + 1)(x – 1)2 > 0; 
    (–1, 1) ∪ (1,∞)
    Calculus 9th Purcell Chapter
     
  53. Tell whether each of the following is true or false. 
  54. (a) –3 < –7
    (b) –1 > –17
    (c) –3 < –22/7
    Answer:
    (a) False. 
    (b) True. 
    (c) False. 
     
  55. Tell whether each of the following is true or false. 
  56. (a) –5 > –√26
    (b) 6/7 < 34/39
    (c) –5/7 < –44/59
    Answer:
    (a) True. 
    (b) True. 
    (c) False. 
     
  57. Assume that a > 0, b > 0. Prove each statement. Hint: Each part requires two proofs: one for ⇒ and one for ⇐. 
  58. (a) a < ba2 < b2
    (b) a < b1/a > 1/b
    Answer:
    (a)
    ⇒ Let a < b, so ab < b2. Also, b2 < ab. Thus, a2 < ab < b2 and a2 < b2. ⇐ Let a2 < b2, so ab Then
    0 < (ab)2 = a2 – 2ab + b2
     < b2 – 2ab + b2 = 2b(ba)
    Since b > 0, we can divide by 2b to get ba > 0.
    (b)
    We can divide or multiply an inequality by any positive number.
    a < ba/b < 1 ⇔ 1/b < 1/a.
     
  59. Which of the following are true if ab
  60. (a) a2ab
    (b) a – 3 ≤ a – 3
    (c) a3a2b
    (d) –a ≤ –b
    Answer:
    (b) and (c) are true.
    (a) is false: Take a = –1, b = 1.
    (d) is false: if ab, then –a ≥ –b
     
  61. Find all values of x that satisfy both inequalities simultaneously. 
  62. (a) 3x + 7 > 1 and 2x + 1 < 3
    (b) 3x + 7 > 1 and 2x + 1 > –4
    (c) 3x + 7 > 1 and 2x + 1 < –4
    Answer:
    (a)
    3x + 7 > 1 and 2x + 1 < 3
    3x > –6 and 2x < 2
    x > –2 and x < 1; (–2, 1)
    (b)
    3x + 7 > 1 and 2x + 1 > –4
    3x > –6 and 2x > –5
    x > –2 and x > -5/2; (-2, ∞)
    (c)
    3x + 7 > 1 and 2x + 1 < –4
    x > –2 and –5/2; ∅
     

  63. Find all the values of x that satisfy at least one of the two inequalities. 
  64. (a) 2x – 7 > 1 or 2x + 1 < 3
    (b) 2x – 7 ≤ 1 or 2x + 1 < 3
    (c) 2x – 7 ≤ 1 or 2x + 1 > 3
    Answer:
    (a)
    2x – 7 > 1 or 2x + 1 < 3
    2x > 8 or 2x < 2
    x > 4 or x < 1
    (–∞, 1) ∪ (4, ∞)
    (b)
    2x – 7 ≤ 1 or 2x + 1 < 3
    2x ≤ 8 or 2x < 2
    x ≤ 4 or x < 1
    (–∞, 4]
    (c)
    2x – 7 ≤ 1 or 2x + 1 > 3
    2x ≤ 8 or 2x > 2
    x ≤ 4 or x > 1
    (–∞, ∞)
     
  65. Solve for x, expressing your answer in interval notation. 
  66. (a) (x + 1)(x2 + 2x – 7) ≥ x2 – 1
    (b) x4x2 ≥ 8
    (c) (x2 + 1)2 – 7 (x2 + 1) + 10 < 0
    Answer:
    (a)
    (x + 1)(x2 + 2x – 7) ≥ x2 – 1
    x3 + 3x2 – 5x – 7 ≥ x2 – 1
    x3 + 2x2 – 5x – 6 ≥ 0
    (x + 3)(x + 1)(x – 2) ≥ 0
    [–3, –1] ∪ [2, ∞)
    (b)
    x4x2 ≥ 8
    x4x2 – 8 ≥ 0
    (x2 – 4)(x2 + 2) ≥ 0
    (x2 + 2)(x + 2)(x – 2) ≥ 0
    (–∞, –2] ∪ [2, ∞)
    (c)
    (x2 + 1)2 – 7 (x2 + 1) + 10 < 0
    [(x2 + 1) – 5] [(x2 + 1) – 2] < 0
    (x2 – 4)(x2 – 1) < 0
    (x + 2)(x + 1)(x – 1)(x – 2) < 0
    (–2, –1) ∪ (1, 2)
     
  67. Solve each inequality. Express your solution in interval notation. 
  68. (a) 1.99 < 1/x < 2.01
    (b) 2.99 < 1/x + 2 < 3.01
    Answer:
    (a)
    1.99 < 1/x < 2.01
    1.99x < 1 < 2.01x
    1.99x < 1 and 1 < 2.01x
    x < 1/1.99 and x > 1/2.01
    1/2.01 < x < 1/1.99
    (1/2.01 , x < 1/1.99)
    Calculus 9th Purcell Chapter
    (b)
    2.99 < 1/x + 2 < 3.01
    2.99(x + 2) < 1 < 3.01(x + 2)
    2.99x + 5.98 < 1 and 1 < 3.01x + 6.02
    x < –4.98/2.99 and x > –5.02/3.01
    5.02/3.01 < x < –4.98/2.99
    (–5.02/3.01 , –4.98/2.99)
     
    Calculus 9th Purcell Chapter

Demikian soal serta kunci jawaban dan penjelasan untuk Pembahasan Latihan Buku Calculus 9th Purcell Chapter 0 - 0.2 Number 1 - 34. Untuk pembahasan selanjutnya, di postingan selanjutnya juga ya. Ini dapat dijadikan bahan untuk belajar 👍. Semoga tulisan ini bermanfaat. Amiiinnn 👐👐👐.
Jangan lupa untuk SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar atau masukan serta share postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆

Ahmad Qolfathiriyus Firdaus

We are bantalmateri.com that utilizes the internet and digital media in delivering material, questions and even the form of discussion. In the current generation, online learning methods (commonly called daring) are considered closer to students who are very integrated and difficult to separate from technology. The emergence of technology has also facilitated the implementation of schools even though students and educators alike have to adapt.

No comments:

Post a Comment