◀ CHAPTER 0 PRELIMINARIES ▶
◀ SECTION 0.2 Inequalities And Absolute Values ▶
Concepts Review 
- The set {x: –1 ≤ x < 5} is written in interval notation as __________ and the set {x: x ≤ –2} is written as __________. 
 - If a/b < 0, then either a < 0 and __________ or a > 0 and __________. 
 - Which of the following are always true?
 - The inequality |x – 2| ≤ 3 is equivalent to __________ ≤ x ≤ __________.
 
Answer:
      [–1, 5); (–∞, –2]
    ■
      Answer:
      b > 0; b < 0 
    ■
      (a) |–x| = x
      (b) |x|2 = x2
      (c) |xy| = |x| |y|
      (d) √(x2) = x
    Answer:
      (b) and (c)
    ■
      Answer:
      –1 ≤ x ≤ 5
    ■
        Problem Set 0.2, Number 1 - 42.
- Show each of the following intervals on the real line.
 - Use the notation of Problem 1 to describe the gollowing intervals.
 - x – 7 < 2x – 5
 - 3x – 5 < 4x – 6
 - 7x – 2 ≤ 9x + 3
 - 5x – 3 > 6x – 4
 - –4 < 3x + 2 < 5
 - –3 < 4x – 9 < 11
 - –3 < 1 – 6x ≤ 4
 - 4 < 5 – 3x < 7
 - x2 + 2x – 12 < 0
 - x2 – 5x – 6 > 0
 - 2x2 + 5x – 3 > 0
 - 4x2 – 5x – 6 < 0
 - x + 4/x – 3 ≤ 0
 - 3x – 2/x – 1 ≥ 0
 - 2/x < 5
 - 7/4x ≤ 7
 - 1/3x – 2 ≤ 4
 - 3/x + 5 > 2
 - (x + 2)(x – 1)(x – 3) > 0
 - (2x + 3)(3x – 1)(x – 2) < 0
 - (2x – 3)(x – 1)2(x – 3) ≥ 0
 - (2x – 3)(x – 1)2(x – 3) > 0
 - x3 – 5x2 – 6x < 0
 - x3 – x2 – x + 1 > 0
 - Tell whether each of the following is true or false.
 - Tell whether each of the following is true or false.
 - Assume that a > 0, b > 0. Prove each statement. Hint: Each part requires two proofs: one for ⇒ and one for ⇐.
 - Which of the following are true if a ≤ b?
 - Find all values of x that satisfy both inequalities simultaneously.
 - Find all the values of x that satisfy at least one of the two inequalities.
 - Solve for x, expressing your answer in interval notation.
 - Solve each inequality. Express your solution in interval notation.
 
(a) [–1,1]
    (b) (–4, 1]
    (c) (–4, 1)
    (d) [1, 4]
    (e) [–1, ∞)
    (f) (–∞, 0]
    Answer:
    (a)
    
  
    ■
    (b)
    
  
  
    ■
    (c)
    
  
    ■
    (d)
    
  
    ■
    (e)
    
  
    ■
    (f)
    
  
    ■
  (a)
  
  (b)
  
  (c)
  
  (d)
  
    Answer:
  (a) (2, 7) 
    ■
  (b) [–3, 4) 
    ■
  (c) (–∞, –2] 
    ■
  (d) [–1, 3] 
    ■
  In each of Problems 3-26, express the solution set of the given inequality in interval natation and sketch its graph.
  
Answer:
  x – 7 < 2x – 5 
  –2 < x; (–2, ∞) 
  
  
    ■
  Answer:
  3x – 5 < 4x – 6 
  1 < x; (1, ∞) 
  
  
    ■
  Answer:
  7x – 2 ≤ 9x + 3 
  –5 ≤ 2x 
  x ≥ –5/2; [–5/2 ,∞)  
  
  
    ■
  Answer:
  5x – 3 > 6x – 4
  1 > x; (–∞,1)
  
  
    ■
  Answer:
  –4 < 3x + 2 < 5 
  –6 < 3x < 3 
  –2 < x < 1; (–2,–1)  
  
  
    ■
  Answer:
  –3 < 4x – 9 < 11 
  6 < 4x < 20 
  3/2 < x < 5; (3/2 ,5) 
  
  
    ■
  Answer:
  –3 < 1 – 6x ≤ 4 
  –4 < –6x ≤ 3 
  2/3 > x ≥ –½; [–½, 2/3) 
  
  
    ■
  Answer:
  4 < 5 – 3x < 7 
  –1 < –3x < 2 
  1/3 > x < –2/3 ; (–2/3 , 1/3) 
  
  
    ■
  Answer:
  x2 + 2x – 12 < 0 
  x = –2±√[(2)2 – 4(1)(–12)]/2(1)
  x = –2±√52/2
  x = –1±√13
  [x–(–1+√13)][x–(–1-√13)] < 0; 
  (–1-√13,–1+√13)
  
  
    ■
  Answer:
  x2 – 5x – 6 > 0 
  (x + 1)(x – 6) > 0;
  (–∞,–1) ∪ (6,∞)
  
  
    ■
  Answer:
  2x2 + 5x – 3 > 0 
  (–∞,–3) ∪ (½,∞)
  
  
    ■
  Answer:
  4x2 – 5x – 6 < 0 
  (4x + 3)(x – 2) < 0 ; (–3/4 ,2)
  
  
    ■
    Answer:
  x + 4/x – 3 ≤ 0; [–4, 3) 
  
  
    ■
    Answer:
  3x – 2/x – 1 ≥ 0; (–∞, 2/3] ∪ (1,∞)
  
  
    ■
    Answer:
  2/x < 5 
  2/x – 5 < 0 
  2 – 5x/x < 0; 
  (–∞,0) ∪ (2/5 ,∞)
  
  
    ■
    Answer:
  7/4x ≤ 7 
  7/4x – 7 ≤ 0 
  7 – 28x/4x ≤ 0 
  (–∞,0) ∪ [1/4 ,∞)
  
  
    ■
    Answer:
  1/3x – 2 ≤ 4 
  1/3x – 2 – 4 ≤ 0 
  1 – 4(3x – 2)/3x – 2 ≤ 0 
  9 – 12x/3x – 2 ≤ 0; (–∞, 2/3) ∪ [3/4 ,∞) 
  
  
    ■
    Answer:
  3/x + 5 > 2 
  3/x + 5 – 2 > 0 
  3 – 2(x + 5)/x + 5 > 0 
  –2x – 7/x + 5 > 0; (–5,–7/2) 
  
  
    ■
    Answer:
  (x + 2)(x – 1)(x – 3) > 0 
  (x + 2)(x – 1)(x – 3) > 0; (–2, 1) ∪ (3, 8) 
  
  
    ■
    Answer:
  (2x + 3)(3x – 1)(x – 2) < 0 
  (2x + 3)(3x – 1)(x – 2) < 0; (–∞, –3/2) ∪ (1/3, 2) 
  
  
    ■
    Answer:
  (2x – 3)(x – 1)2(x – 3) ≥ 0 
  (2x – 3)(x – 1)2(x – 3) ≥ 0; (–∞, –3/2] ∪ [3,∞) 
  
  
    ■
    Answer:
  (2x – 3)(x – 1)2(x – 3) > 0; 
  (–∞,1) ∪ (1, 3/2) ∪ (3,∞)
  
  
    ■
    Answer:
  x3 – 5x2 – 6x < 0 
  x(x2 – 5x – 6) < 0 
  x(x + 1)(x – 6) < 0 
  (–∞,–1) ∪ (0, 6)
  
  
    ■
    Answer:
  x3 – x2 – x + 1 > 0 
  (x2 – 1)(x – 1) > 0 
  (x + 1)(x – 1)2 > 0; 
  (–1, 1) ∪ (1,∞)
  
  
    ■
    (a) –3 < –7
  (b) –1 > –17
  (c) –3 < –22/7
    Answer:
  (a) False. 
    ■
  (b) True. 
    ■
  (c) False. 
    ■
    (a) –5 > –√26
(b) 6/7 < 34/39
(c) –5/7 < –44/59
    Answer:
  (a) True. 
    ■
  (b) True. 
    ■
  (c) False. 
    ■
    (a) a < b ⇔ a2 < b2
(b) a < b ⇔ 1/a > 1/b
    Answer:
  (a)
  ⇒ Let a < b, so ab < b2. Also, b2 < ab. Thus, a2 < ab < b2 and a2 < b2. ⇐ Let a2 < b2, so a ≠ b Then
  0 < (a – b)2 = a2 – 2ab + b2
   < b2 – 2ab + b2 = 2b(b – a)
  Since b > 0, we can divide by 2b to get b – a > 0.
    ■
  (b)
  We can divide or multiply an inequality by any positive number.
  a < b ⇔ a/b < 1 ⇔ 1/b < 1/a.
    ■
    (a) a2 ≤ ab
(b) a – 3 ≤ a – 3
(c) a3 ≤ a2b
(d) –a ≤ –b
    Answer:
  (b) and (c) are true.
  (a) is false: Take a = –1, b = 1.
  (d) is false: if a ≤ b, then –a ≥ –b
    ■
    (a) 3x + 7 > 1 and 2x + 1 < 3
(b) 3x + 7 > 1 and 2x + 1 > –4
(c) 3x + 7 > 1 and 2x + 1 < –4
    Answer:
  (a)
  3x + 7 > 1 and 2x + 1 < 3
  3x > –6 and 2x < 2 
  x > –2 and x < 1; (–2, 1) 
    ■
  (b)
  3x + 7 > 1 and 2x + 1 > –4 
  3x > –6 and 2x > –5 
  x > –2 and x > -5/2; (-2, ∞)
    ■
  (c)
  3x + 7 > 1 and 2x + 1 < –4 
  x > –2 and –5/2; ∅
    ■
    (a) 2x – 7 > 1 or 2x + 1 < 3
  (b) 2x – 7 ≤ 1 or 2x + 1 < 3
  (c) 2x – 7 ≤ 1 or 2x + 1 > 3
    Answer:
  (a)
  2x – 7 > 1 or 2x + 1 < 3
  2x > 8 or 2x < 2
  x > 4 or x < 1
  (–∞, 1) ∪ (4, ∞)
    ■
  (b)
  2x – 7 ≤ 1 or 2x + 1 < 3
  2x ≤ 8 or 2x < 2
  x ≤ 4 or x < 1
  (–∞, 4]
    ■
  (c)
  2x – 7 ≤ 1 or 2x + 1 > 3
  2x ≤ 8 or 2x > 2
  x ≤ 4 or x > 1
  (–∞, ∞)
    ■
    (a) (x + 1)(x2 + 2x – 7) ≥ x2 – 1
  (b) x4 – x2 ≥ 8
  (c) (x2 + 1)2 – 7 (x2 + 1) + 10 < 0
    Answer:
  (a)
  (x + 1)(x2 + 2x – 7) ≥ x2 – 1
  x3 + 3x2 – 5x – 7 ≥ x2 – 1
  x3 + 2x2 – 5x – 6 ≥ 0
  (x + 3)(x + 1)(x – 2) ≥ 0
  [–3, –1] ∪ [2, ∞)
    ■
  (b)
  x4 – x2 ≥ 8
  x4 – x2 – 8 ≥ 0
  (x2 – 4)(x2 + 2) ≥ 0
  (x2 + 2)(x + 2)(x – 2) ≥ 0
  (–∞, –2] ∪ [2, ∞)
    ■
  (c)
  (x2 + 1)2 – 7 (x2 + 1) + 10 < 0
  [(x2 + 1) – 5] [(x2 + 1) – 2] < 0
  (x2 – 4)(x2 – 1) < 0
  (x + 2)(x + 1)(x – 1)(x – 2) < 0
  (–2, –1) ∪ (1, 2)
    ■
    (a) 1.99 < 1/x < 2.01
(b) 2.99 < 1/x + 2 < 3.01
     
  
  
    
Answer:
  (a)
  1.99 < 1/x < 2.01
  1.99x < 1 < 2.01x
  1.99x < 1 and 1 < 2.01x
  x < 1/1.99 and x > 1/2.01
  1/2.01 < x < 1/1.99
  (1/2.01 , x < 1/1.99)
  
  
    ■
  (b)
  2.99 < 1/x + 2 < 3.01
  2.99(x + 2) < 1 < 3.01(x + 2)
  2.99x + 5.98 < 1 and 1 < 3.01x + 6.02
  x < –4.98/2.99 and x > –5.02/3.01
  –5.02/3.01 < x < –4.98/2.99
  (–5.02/3.01 , –4.98/2.99)
    ■
  Demikian soal serta kunci jawaban dan penjelasan untuk Pembahasan Latihan Buku Calculus 9th Purcell Chapter 0 - 0.2 Number 1 - 34. Untuk pembahasan selanjutnya, di postingan selanjutnya juga ya. Ini dapat dijadikan bahan untuk belajar 👍. Semoga tulisan ini bermanfaat. Amiiinnn 👐👐👐.
Jangan lupa untuk SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar atau masukan serta share postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆












































No comments:
Post a Comment