◀ CHAPTER 0 PRELIMINARIES ▶
◀ SECTION 0.2 Inequalities And Absolute Values ▶
Concepts Review
- The set {x: –1 ≤ x < 5} is written in interval notation as __________ and the set {x: x ≤ –2} is written as __________.
- If a/b < 0, then either a < 0 and __________ or a > 0 and __________.
- Which of the following are always true?
- The inequality |x – 2| ≤ 3 is equivalent to __________ ≤ x ≤ __________.
Answer:
[–1, 5); (–∞, –2]
■
Answer:
b > 0; b < 0
■
(a) |–x| = x
(b) |x|2 = x2
(c) |xy| = |x| |y|
(d) √(x2) = x
Answer:
(b) and (c)
■
Answer:
–1 ≤ x ≤ 5
■
Problem Set 0.2, Number 1 - 42.
- Show each of the following intervals on the real line.
- Use the notation of Problem 1 to describe the gollowing intervals.
- x – 7 < 2x – 5
- 3x – 5 < 4x – 6
- 7x – 2 ≤ 9x + 3
- 5x – 3 > 6x – 4
- –4 < 3x + 2 < 5
- –3 < 4x – 9 < 11
- –3 < 1 – 6x ≤ 4
- 4 < 5 – 3x < 7
- x2 + 2x – 12 < 0
- x2 – 5x – 6 > 0
- 2x2 + 5x – 3 > 0
- 4x2 – 5x – 6 < 0
- x + 4/x – 3 ≤ 0
- 3x – 2/x – 1 ≥ 0
- 2/x < 5
- 7/4x ≤ 7
- 1/3x – 2 ≤ 4
- 3/x + 5 > 2
- (x + 2)(x – 1)(x – 3) > 0
- (2x + 3)(3x – 1)(x – 2) < 0
- (2x – 3)(x – 1)2(x – 3) ≥ 0
- (2x – 3)(x – 1)2(x – 3) > 0
- x3 – 5x2 – 6x < 0
- x3 – x2 – x + 1 > 0
- Tell whether each of the following is true or false.
- Tell whether each of the following is true or false.
- Assume that a > 0, b > 0. Prove each statement. Hint: Each part requires two proofs: one for ⇒ and one for ⇐.
- Which of the following are true if a ≤ b?
- Find all values of x that satisfy both inequalities simultaneously.
- Find all the values of x that satisfy at least one of the two inequalities.
- Solve for x, expressing your answer in interval notation.
- Solve each inequality. Express your solution in interval notation.
(a) [–1,1]
(b) (–4, 1]
(c) (–4, 1)
(d) [1, 4]
(e) [–1, ∞)
(f) (–∞, 0]
Answer:
(a)
■
(b)
■
(c)
■
(d)
■
(e)
■
(f)
■
(a)
(b)
(c)
(d)
Answer:
(a) (2, 7)
■
(b) [–3, 4)
■
(c) (–∞, –2]
■
(d) [–1, 3]
■
In each of Problems 3-26, express the solution set of the given inequality in interval natation and sketch its graph.
Answer:
x – 7 < 2x – 5
–2 < x; (–2, ∞)
■
Answer:
3x – 5 < 4x – 6
1 < x; (1, ∞)
■
Answer:
7x – 2 ≤ 9x + 3
–5 ≤ 2x
x ≥ –5/2; [–5/2 ,∞)
■
Answer:
5x – 3 > 6x – 4
1 > x; (–∞,1)
■
Answer:
–4 < 3x + 2 < 5
–6 < 3x < 3
–2 < x < 1; (–2,–1)
■
Answer:
–3 < 4x – 9 < 11
6 < 4x < 20
3/2 < x < 5; (3/2 ,5)
■
Answer:
–3 < 1 – 6x ≤ 4
–4 < –6x ≤ 3
2/3 > x ≥ –½; [–½, 2/3)
■
Answer:
4 < 5 – 3x < 7
–1 < –3x < 2
1/3 > x < –2/3 ; (–2/3 , 1/3)
■
Answer:
x2 + 2x – 12 < 0
x = –2±√[(2)2 – 4(1)(–12)]/2(1)
x = –2±√52/2
x = –1±√13
[x–(–1+√13)][x–(–1-√13)] < 0;
(–1-√13,–1+√13)
■
Answer:
x2 – 5x – 6 > 0
(x + 1)(x – 6) > 0;
(–∞,–1) ∪ (6,∞)
■
Answer:
2x2 + 5x – 3 > 0
(–∞,–3) ∪ (½,∞)
■
Answer:
4x2 – 5x – 6 < 0
(4x + 3)(x – 2) < 0 ; (–3/4 ,2)
■
Answer:
x + 4/x – 3 ≤ 0; [–4, 3)
■
Answer:
3x – 2/x – 1 ≥ 0; (–∞, 2/3] ∪ (1,∞)
■
Answer:
2/x < 5
2/x – 5 < 0
2 – 5x/x < 0;
(–∞,0) ∪ (2/5 ,∞)
■
Answer:
7/4x ≤ 7
7/4x – 7 ≤ 0
7 – 28x/4x ≤ 0
(–∞,0) ∪ [1/4 ,∞)
■
Answer:
1/3x – 2 ≤ 4
1/3x – 2 – 4 ≤ 0
1 – 4(3x – 2)/3x – 2 ≤ 0
9 – 12x/3x – 2 ≤ 0; (–∞, 2/3) ∪ [3/4 ,∞)
■
Answer:
3/x + 5 > 2
3/x + 5 – 2 > 0
3 – 2(x + 5)/x + 5 > 0
–2x – 7/x + 5 > 0; (–5,–7/2)
■
Answer:
(x + 2)(x – 1)(x – 3) > 0
(x + 2)(x – 1)(x – 3) > 0; (–2, 1) ∪ (3, 8)
■
Answer:
(2x + 3)(3x – 1)(x – 2) < 0
(2x + 3)(3x – 1)(x – 2) < 0; (–∞, –3/2) ∪ (1/3, 2)
■
Answer:
(2x – 3)(x – 1)2(x – 3) ≥ 0
(2x – 3)(x – 1)2(x – 3) ≥ 0; (–∞, –3/2] ∪ [3,∞)
■
Answer:
(2x – 3)(x – 1)2(x – 3) > 0;
(–∞,1) ∪ (1, 3/2) ∪ (3,∞)
■
Answer:
x3 – 5x2 – 6x < 0
x(x2 – 5x – 6) < 0
x(x + 1)(x – 6) < 0
(–∞,–1) ∪ (0, 6)
■
Answer:
x3 – x2 – x + 1 > 0
(x2 – 1)(x – 1) > 0
(x + 1)(x – 1)2 > 0;
(–1, 1) ∪ (1,∞)
■
(a) –3 < –7
(b) –1 > –17
(c) –3 < –22/7
Answer:
(a) False.
■
(b) True.
■
(c) False.
■
(a) –5 > –√26
(b) 6/7 < 34/39
(c) –5/7 < –44/59
Answer:
(a) True.
■
(b) True.
■
(c) False.
■
(a) a < b ⇔ a2 < b2
(b) a < b ⇔ 1/a > 1/b
Answer:
(a)
⇒ Let a < b, so ab < b2. Also, b2 < ab. Thus, a2 < ab < b2 and a2 < b2. ⇐ Let a2 < b2, so a ≠ b Then
0 < (a – b)2 = a2 – 2ab + b2
< b2 – 2ab + b2 = 2b(b – a)
Since b > 0, we can divide by 2b to get b – a > 0.
■
(b)
We can divide or multiply an inequality by any positive number.
a < b ⇔ a/b < 1 ⇔ 1/b < 1/a.
■
(a) a2 ≤ ab
(b) a – 3 ≤ a – 3
(c) a3 ≤ a2b
(d) –a ≤ –b
Answer:
(b) and (c) are true.
(a) is false: Take a = –1, b = 1.
(d) is false: if a ≤ b, then –a ≥ –b
■
(a) 3x + 7 > 1 and 2x + 1 < 3
(b) 3x + 7 > 1 and 2x + 1 > –4
(c) 3x + 7 > 1 and 2x + 1 < –4
Answer:
(a)
3x + 7 > 1 and 2x + 1 < 3
3x > –6 and 2x < 2
x > –2 and x < 1; (–2, 1)
■
(b)
3x + 7 > 1 and 2x + 1 > –4
3x > –6 and 2x > –5
x > –2 and x > -5/2; (-2, ∞)
■
(c)
3x + 7 > 1 and 2x + 1 < –4
x > –2 and –5/2; ∅
■
(a) 2x – 7 > 1 or 2x + 1 < 3
(b) 2x – 7 ≤ 1 or 2x + 1 < 3
(c) 2x – 7 ≤ 1 or 2x + 1 > 3
Answer:
(a)
2x – 7 > 1 or 2x + 1 < 3
2x > 8 or 2x < 2
x > 4 or x < 1
(–∞, 1) ∪ (4, ∞)
■
(b)
2x – 7 ≤ 1 or 2x + 1 < 3
2x ≤ 8 or 2x < 2
x ≤ 4 or x < 1
(–∞, 4]
■
(c)
2x – 7 ≤ 1 or 2x + 1 > 3
2x ≤ 8 or 2x > 2
x ≤ 4 or x > 1
(–∞, ∞)
■
(a) (x + 1)(x2 + 2x – 7) ≥ x2 – 1
(b) x4 – x2 ≥ 8
(c) (x2 + 1)2 – 7 (x2 + 1) + 10 < 0
Answer:
(a)
(x + 1)(x2 + 2x – 7) ≥ x2 – 1
x3 + 3x2 – 5x – 7 ≥ x2 – 1
x3 + 2x2 – 5x – 6 ≥ 0
(x + 3)(x + 1)(x – 2) ≥ 0
[–3, –1] ∪ [2, ∞)
■
(b)
x4 – x2 ≥ 8
x4 – x2 – 8 ≥ 0
(x2 – 4)(x2 + 2) ≥ 0
(x2 + 2)(x + 2)(x – 2) ≥ 0
(–∞, –2] ∪ [2, ∞)
■
(c)
(x2 + 1)2 – 7 (x2 + 1) + 10 < 0
[(x2 + 1) – 5] [(x2 + 1) – 2] < 0
(x2 – 4)(x2 – 1) < 0
(x + 2)(x + 1)(x – 1)(x – 2) < 0
(–2, –1) ∪ (1, 2)
■
(a) 1.99 < 1/x < 2.01
(b) 2.99 < 1/x + 2 < 3.01
Answer:
(a)
1.99 < 1/x < 2.01
1.99x < 1 < 2.01x
1.99x < 1 and 1 < 2.01x
x < 1/1.99 and x > 1/2.01
1/2.01 < x < 1/1.99
(1/2.01 , x < 1/1.99)
■
(b)
2.99 < 1/x + 2 < 3.01
2.99(x + 2) < 1 < 3.01(x + 2)
2.99x + 5.98 < 1 and 1 < 3.01x + 6.02
x < –4.98/2.99 and x > –5.02/3.01
–5.02/3.01 < x < –4.98/2.99
(–5.02/3.01 , –4.98/2.99)
■
Demikian soal serta kunci jawaban dan penjelasan untuk Pembahasan Latihan Buku Calculus 9th Purcell Chapter 0 - 0.2 Number 1 - 34. Untuk pembahasan selanjutnya, di postingan selanjutnya juga ya. Ini dapat dijadikan bahan untuk belajar 👍. Semoga tulisan ini bermanfaat. Amiiinnn 👐👐👐.
Jangan lupa untuk SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar atau masukan serta share postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment