Kunci Jawaban dan Pembahasan Soal || Buku Calculus 9th Purcell Chapter 0 - 0.3 Number 1 – 28

Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 Section 0.3

CHAPTER 0 PRELIMINARIES

SECTION 0.3 The Rectangular Coordinate System


Concepts Review
  1. The distance between the points (–2, 3) and (x, y) is ______.
  2. The equation of the circle of radius 5 and center (–4, 2) is ______.
  3. The midpoint of the line segment joining (–2, 3) and (5, 7) is ______.
  4. The line through (a, b) and (c, d) has slope m = ______ provided ac.
Answer:
  1. √[(x + 2)2 + (y – 3)2]
  2. (x + 4)2 + (y – 2)2 = 25
  3. (–2 + 5/2 , 3 + 7/2) = (1.5 , 5)
  4. db/ca
Calculus 9th Purcell Chapter 0 - 0.3

Problem Set 0.1, Number 1 – 28.
    In Problems 1-4, plot the given points in the coordinate plane and then find the distance between them.
  1. (3, 1), (1, 1)
  2. Answer:
    Calculus 9th Purcell Chapter 0 - 0.3 Number 1
    d = √[(3 – 1)2 + (1 – 1)2] = √4 = 2

  3. (–3, 5), (2, –2)
  4. Answer:
    Calculus 9th Purcell Chapter 0 - 0.3 Number 2
    d = √[(–3 – 2)2 + (5 + 2)2] = √74 ≈ 8.60

  5. (4, 5), (5, –8)
  6. Answer:
    Calculus 9th Purcell Chapter 0 - 0.3 Number 3
    d = √[(4 – 5)2 + (5 + 8)2] = √170 ≈ 13.04

  7. (–1, 5), (6, 3)
  8. Answer:
    Calculus 9th Purcell Chapter 0 - 0.3 Number 4
    d = √[(–1 – 6)2 + (5 – 3)2] = √[49 + 4] = √53 ≈ 7.28

  9. Show that the triangle whose vertices are (5, 3), (–2, 4), and (10,8) is isosceles.
  10. Answer:
    d1 = √[(5 + 2)2 + (3 – 4)2] = √[49 + 1] = √50
    d2 = √[(5 – 10)2 + (3 – 8)2] = √[25 + 25] = √50
    d3 = √[(–2 – 10)2 + (4 – 8)2] = √[144 + 16] = √160
    d1 = d2 so the triangle is isosceles.

  11. Show that the triangle whose vertices are (2, –4), (4, 0), and (8, –2) is a right triangle.
  12. Answer:
    a = √[(2 – 4)2 + (–4 – 0)2] = √4 + 16 = √20
    b = √[(4 – 8)2 + (0 + 2)2] = √16 + 4 = √20
    c = √[(2 – 8)2 + (–4 + 2)2] = √36 + 4 = √40
    a2 + b2 = c2, so the triangle is a right triangle.

  13. The points (3, –1) and (3, 3) are two vertices of a square. Give three other pairs of possible vertices.
  14. Answer:
    (–1, –1), (–1, 3); (7, –1), (7, 3); (1, 1), (5, 1)

  15. Find the point on the x-axis that is equidistant from (3, 1) and (6, 4).
  16. Answer:
    [(x – 3)2 + (0 – 1)2]
    =
    [(x – 6)2 + (0 – 4)2] ;
    x2 – 6x + 10
    =
    x2 – 12x + 52
    6x
    =
    42
    x
    =
    7 (7, 0)

  17. Find the distance between (–2, 3) and the midpoint of the segment joining (–2, –2) and (4, 3).
  18. Answer:
    (–2 + 4/2 , –2 + 3/2) = (1 , 1/2) ;
    d = √[(1 + 2)2 + (1/2 – 3)2] = √[9 + 25/4] ≈ 3.91

  19. Find the length of the line segment joining the midpoints of the segments AB and CD, where A = (1, 3), B = (2, 6), C = (4, 7), and D = (3, 4).
  20. Answer:
    midpoint of AB = (1 + 2/2 , 3 + 6/2) = (3/2 , 3/2)
    midpoint of CD = (4 + 3/2 , 7 + 4/2) = (7/2 , 11/2)
    d = √[(3/27/2)2 + (9/211/2)2]
    d = √[4 + 1] = √5 ≈ 2.24

    In Problems 11-16, find the equation of the circle satisfying the given conditions.
  21. Center (1, 1), radius 1
  22. Answer:
    (x – 2)2 + (y – 1)2 = 1

  23. Center (–2, 3), radius 4
  24. Answer:
    (x + 2)2 + (y – 3)2 = 42
    (x + 2)2 + (y – 3)2 = 16

  25. Center (2, –1), goes through (5, 3)
  26. Answer:
    (x – 2)2 + (y + 1)2 = r2
    (5 – 2)2 + (3 + 1)2 = r2
    r2 = 9 + 16 = 25
    (x – 2)2 + (y + 1)2 = 25

  27. Center (4, 3), goes through (6, 2)
  28. Answer:
    (x – 4)2 + (y – 3)2 = r2
    (6 – 4)2 + (2 – 3)2 = r2
    r2 = 4 + 1 = 5
    (x – 4)2 + (y – 3)2 = 5

  29. Diameter AB, where A = (1, 3) and B = (3, 7)
  30. Answer:
    center = (1 + 3/2 , 3 + 7/2) = (2, 5)
    radius = ½ √[(1 – 3)2 + (3 – 7)2] = ½ √[4 + 16]
    radius = ½ √20 = √5
    (x – 2)2 + (y – 5)2 = 5

  31. Center (3, 4) and tangent to x-axis
  32. Answer:
    Since the circle is tangent to the x-axis, r = 4.
    (x – 3)2 + (y – 4)2 = 16

    In Problems 17-22, find the center and radius of the circle with the given equation.
  33. x2 + 2x + 10 + x2 – 6y – 10 = 0
  34. Answer:
    x2 + 2x + 10 + y2 – 6y – 10
    =
    0
    x2 + 2x + y2 – 6y
    =
    0
    (x2 + 2x + 1) + (y2 – 6y + 9)
    =
    1 + 9
    (x + 1)2 + (y – 3)2
    =
    10
    Center = (–1, 3); radius = 10

  35. x2 + y2 – 6y = 16
  36. Answer:
    x2 + y2 – 6y
    =
    16
    x2 + (y2 – 6y + 9)
    =
    16 + 9
    x2 + (y – 3)2
    =
    25
    Center = (0, 3); radius = 5

  37. x2 + y2 – 12x + 35 = 0
  38. Answer:
    x2 + y2 – 12x + 35
    =
    0
    x2 – 12x + y2
    =
    –35
    (x2 – 12x + 36) + y2
    =
    –35 + 36
    (x – 6)2 + y2
    =
    1
    Center = (6, 0); radius = 1

  39. x2 + y2 – 10x + 10y = 0
  40. Answer:
    x2 + y2 – 10x + 10y
    =
    0
    (x2 – 10x + 25) + (y2 + 10y + 25)
    =
    25 + 25
    (x – 5)2 + (y + 5)2
    =
    50
    Center = (5, –5); radius = √50 = 52

  41. 4x2 + 16x + 15 + 4y2 + 6y = 0
  42. Answer:
    4x2 + 16x + 15 + 4y2 + 6y
    =
    0
    4(x2 + 4x + 4) + 4(y2 + 3/2 · y + 9/16)
    =
    –15 + 16 + 9/4
    4(x + 2)2 + 4(y + 3/4)2
    =
    13/4
    (x + 2)2 + (y + 3/4)2
    =
    13/16
    Center = (–2, –3/4); radius = √13/4

  43. x2 + 16x + 105/16 + 4y2 + 3y = 0
  44. Answer:
    4x2 + 16x + 105/16 + 4y2 + 3y
    =
    0
    4(x2 + 4x + 4) + 4(y2 + 3/2 · y + 9/64)
    =
    105/16 + 16 + 9/16
    4(x + 2)2 + 4(y + 3/8)2
    =
    10
    (x + 2)2 + (y + 3/8)2
    =
    5/2
    Center = (–2, –3/8); radius = √(5/2) = √10/2

    In Problems 23-28, find the slope of the line containing the given two points.
  45. (1, 1) and (2, 2)
  46. Answer:
     
    2 – 1
    =
    1
    2 – 1

  47. (3, 5) and (4, 7)
  48. Answer:
     
    7 – 5
    =
    2
    4 – 3

  49. (2, 3) and (–5, –6)
  50. Answer:
     
    –6 – 3
    =
    9
    –5 – 2
    7

  51. (2, –4) and (0, –6)
  52. Answer:
     
    –6 + 4
    =
    1
    0 – 2

  53. (3, 0) and (0, 5)
  54. Answer:
     
    5 – 0
    =
    5
    0 – 3
    3

  55. (–6, 0) and (0, 6)
  56. Answer:
     
    6 – 0
    =
    1
    0 + 6

Demikian Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - 0.3 Number 1 - 28. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang aplikasi yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆

Ahmad Qolfathiriyus Firdaus

We are bantalmateri.com that utilizes the internet and digital media in delivering material, questions and even the form of discussion. In the current generation, online learning methods (commonly called daring) are considered closer to students who are very integrated and difficult to separate from technology. The emergence of technology has also facilitated the implementation of schools even though students and educators alike have to adapt.

No comments:

Post a Comment