◀ CHAPTER 0 PRELIMINARIES ▶
◀ SECTION 0.3 The Rectangular Coordinate System ▶
Concepts Review
- The distance between the points (–2, 3) and (x, y) is ______.
- The equation of the circle of radius 5 and center (–4, 2) is ______.
- The midpoint of the line segment joining (–2, 3) and (5, 7) is ______.
- The line through (a, b) and (c, d) has slope m = ______ provided a ≠ c.
Answer:
- √[(x + 2)2 + (y – 3)2]
- (x + 4)2 + (y – 2)2 = 25
- (–2 + 5/2 , 3 + 7/2) = (1.5 , 5)
- d – b/c – a
Problem Set 0.1, Number 1 – 28.
- (3, 1), (1, 1)
- (–3, 5), (2, –2)
- (4, 5), (5, –8)
- (–1, 5), (6, 3)
- Show that the triangle whose vertices are (5, 3), (–2, 4), and (10,8) is isosceles.
- Show that the triangle whose vertices are (2, –4), (4, 0), and (8, –2) is a right triangle.
- The points (3, –1) and (3, 3) are two vertices of a square. Give three other pairs of possible vertices.
- Find the point on the x-axis that is equidistant from (3, 1) and (6, 4).
- Find the distance between (–2, 3) and the midpoint of the segment joining (–2, –2) and (4, 3).
- Find the length of the line segment joining the midpoints of the segments AB and CD, where A = (1, 3), B = (2, 6), C = (4, 7), and D = (3, 4).
- Center (1, 1), radius 1
- Center (–2, 3), radius 4
- Center (2, –1), goes through (5, 3)
- Center (4, 3), goes through (6, 2)
- Diameter AB, where A = (1, 3) and B = (3, 7)
- Center (3, 4) and tangent to x-axis
- x2 + 2x + 10 + x2 – 6y – 10 = 0
- x2 + y2 – 6y = 16
- x2 + y2 – 12x + 35 = 0
- x2 + y2 – 10x + 10y = 0
- 4x2 + 16x + 15 + 4y2 + 6y = 0
- x2 + 16x + 105/16 + 4y2 + 3y = 0
- (1, 1) and (2, 2)
- (3, 5) and (4, 7)
- (2, 3) and (–5, –6)
- (2, –4) and (0, –6)
- (3, 0) and (0, 5)
- (–6, 0) and (0, 6)
In Problems 1-4, plot the given points in the coordinate plane and then find the distance between them.
Answer:
d = √[(3 – 1)2 + (1 – 1)2] = √4 = 2
Answer:
d = √[(–3 – 2)2 + (5 + 2)2] = √74 ≈ 8.60
Answer:
d = √[(4 – 5)2 + (5 + 8)2] = √170 ≈ 13.04
Answer:
d = √[(–1 – 6)2 + (5 – 3)2] = √[49 + 4] = √53 ≈ 7.28
Answer:
d1 = √[(5 + 2)2 + (3 – 4)2] = √[49 + 1] = √50
d2 = √[(5 – 10)2 + (3 – 8)2] = √[25 + 25] = √50
d3 = √[(–2 – 10)2 + (4 – 8)2] = √[144 + 16] = √160
d1 = d2 so the triangle is isosceles.
Answer:
a = √[(2 – 4)2 + (–4 – 0)2] = √4 + 16 = √20
b = √[(4 – 8)2 + (0 + 2)2] = √16 + 4 = √20
c = √[(2 – 8)2 + (–4 + 2)2] = √36 + 4 = √40
a2 + b2 = c2, so the triangle is a right triangle.
Answer:
(–1, –1), (–1, 3); (7, –1), (7, 3); (1, 1), (5, 1)
Answer:
√[(x – 3)2 + (0 –
1)2]
|
=
|
√[(x – 6)2 + (0 –
4)2] ;
|
x2 – 6x + 10
|
=
|
x2 – 12x + 52
|
6x
|
=
|
42
|
x
|
=
|
7 ⇒ (7, 0)
|
Answer:
(–2 + 4/2 , –2 + 3/2) = (1 , 1/2) ;
d = √[(1 + 2)2 + (1/2 – 3)2] = √[9 + 25/4] ≈ 3.91
Answer:
midpoint of AB = (1 + 2/2 , 3 + 6/2) = (3/2 , 3/2)
midpoint of CD = (4 + 3/2 , 7 + 4/2) = (7/2 , 11/2)
d = √[(3/2 – 7/2)2 + (9/2 – 11/2)2]
d = √[4 + 1] = √5 ≈ 2.24
In Problems 11-16, find the equation of the circle satisfying the given conditions.
Answer:
(x – 2)2 + (y – 1)2 = 1
Answer:
(x + 2)2 + (y – 3)2 = 42
(x + 2)2 + (y – 3)2 = 16
Answer:
(x – 2)2 + (y + 1)2 = r2
(5 – 2)2 + (3 + 1)2 = r2
r2 = 9 + 16 = 25
(x – 2)2 + (y + 1)2 = 25
Answer:
(x – 4)2 + (y – 3)2 = r2
(6 – 4)2 + (2 – 3)2 = r2
r2 = 4 + 1 = 5
(x – 4)2 + (y – 3)2 = 5
Answer:
center = (1 + 3/2 , 3 + 7/2) = (2, 5)
radius = ½ √[(1 – 3)2 + (3 – 7)2] = ½ √[4 + 16]
radius = ½ √20 = √5
(x – 2)2 + (y – 5)2 = 5
Answer:
Since the circle is tangent to the x-axis, r = 4.
(x – 3)2 + (y – 4)2 = 16
In Problems 17-22, find the center and radius of the circle with the given equation.
Answer:
x2 + 2x + 10 + y2
– 6y – 10
|
=
|
0
|
x2 + 2x + y2
– 6y
|
=
|
0
|
(x2
+ 2x + 1) + (y2 – 6y + 9)
|
=
|
1 + 9
|
(x
+ 1)2 + (y – 3)2
|
=
|
10
|
Center
= (–1, 3); radius = √10
|
Answer:
x2 + y2 – 6y
|
=
|
16
|
x2 + (y2 – 6y
+ 9)
|
=
|
16 + 9
|
x2 + (y – 3)2
|
=
|
25
|
Center
= (0, 3); radius = 5
|
Answer:
x2 + y2 – 12x
+ 35
|
=
|
0
|
x2 – 12x + y2
|
=
|
–35
|
(x2
– 12x + 36) + y2
|
=
|
–35 + 36
|
(x
– 6)2 + y2
|
=
|
1
|
Center
= (6, 0); radius = 1
|
Answer:
x2 + y2 – 10x
+ 10y
|
=
|
0
|
(x2
– 10x + 25) + (y2 + 10y + 25)
|
=
|
25 + 25
|
(x
– 5)2 + (y + 5)2
|
=
|
50
|
Center
= (5, –5); radius = √50 = 5√2
|
Answer:
4x2
+ 16x + 15 + 4y2 + 6y
|
=
|
0
|
4(x2
+ 4x + 4) + 4(y2 + 3/2 · y +
9/16)
|
=
|
–15 + 16 + 9/4
|
4(x
+ 2)2 + 4(y + 3/4)2
|
=
|
13/4
|
(x
+ 2)2 + (y + 3/4)2
|
=
|
13/16
|
Center
= (–2, –3/4); radius = √13/4
|
Answer:
4x2
+ 16x + 105/16 + 4y2 + 3y
|
=
|
0
|
4(x2
+ 4x + 4) + 4(y2 + 3/2 · y +
9/64)
|
=
|
– 105/16
+ 16 + 9/16
|
4(x
+ 2)2 + 4(y + 3/8)2
|
=
|
10
|
(x
+ 2)2 + (y + 3/8)2
|
=
|
5/2
|
Center
= (–2, –3/8); radius = √(5/2) = √10/2
|
In Problems 23-28, find the slope of the line containing the given two points.
Answer:
|
2
– 1
|
=
|
1
|
2
– 1
|
Answer:
|
7
– 5
|
=
|
2
|
4
– 3
|
Answer:
|
–6
– 3
|
=
|
9
|
–5
– 2
|
7
|
Answer:
|
–6
+ 4
|
=
|
1
|
0
– 2
|
Answer:
|
5
– 0
|
=
|
–
|
5
|
0
– 3
|
3
|
Answer:
|
6
– 0
|
=
|
1
|
0
+ 6
|
Demikian Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - 0.3 Number 1 - 28. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang aplikasi yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment