◀ CHAPTER 0 PRELIMINARIES ▶
◀ SECTION 0.4 Graphs of Equations ▶
Problem Set 0.4, Number 1 – 21.
In Problems 1–30, plot the graph of each equation. Begin by checking for symmetries and be sure to find all x- and y-intercepts.
- y = –x2 + 1
- x = –y2 + 1
- x = –4y2 – 1
- y = 4x2 – 1
- x2 + y = 0
- y = x2 – 2x
- 7x2 + 3y = 0
- y = 3x2 – 2x + 2
- x2 + y2 = 4
- 3x2 + 4y2 = 12
- y = –x2 – 2x + 2
- 4x2 + 3y2 = 12
- x2 – y2 = 4
- x2 + (y – 1)2 = 9
- 4(x – 1)2 + y2 = 36
- x2 – 4x + 3y2 = –2
- x2 + 9(y + 2)2 = 36
- x4 + y4 = 1
- x4 + y4 = 16
- y = x3 – x
- y = 1/x2 + 1
💬 SOLUTION:
y = –x2 + 1; y-intercept = 1; y = (1 + x)(1 – x); x-intercepts = –1, 1.
Symmetric with respect to the y-axis.
■
💬 SOLUTION:
x = –y2 + 1; y-intercepts = –1, 1; x-intercept = 1.
Symmetric with respect to the x-axis.
■
💬 SOLUTION:
x = –4y2 – 1; x-intercept = –1.
Symmetric with respect to the x-axis.
■
💬 SOLUTION:
y = 4x2 – 1; y-intercept = –1; y = (2x + 1)(2x – 1); x-intercepts = –1/2 , 1/2
Symmetric with respect to the y-axis.
■
💬 SOLUTION:
x2 + y = 0; y = –x2; x-intercept = 0, y-intercept = 0
Symmetric with respect to the y-axis.
■
💬 SOLUTION:
y = x2 – 2x; y-intercept = 0; y = x(2 – x); x-intercepts = 0, 2
■
💬 SOLUTION:
7x2 + 3y = 0; 3y = –7x2; y = –7/3x2; x-intercept = 0, y-intercept = 0.
Symmetric with respect to the y-axis.
■
BACA JUGA:
|
|
💬 SOLUTION:
y = 3x2 – 2x + 2; y-intercept = 2.
■
💬 SOLUTION:
x2 + y2 = 4; x-intercepts = –2, 2; y-intercepts = –2, 2.
Symmetric with respect to the x-axis, y-axis, and origin.
■
💬 SOLUTION:
3x2 + 4y2 = 12; y-intercepts = –√3, √3; x-intercepts = –2, 2.
Symmetric with respect to the x-axis, y-axis, and origin.
■
💬 SOLUTION:
y = –x2 –2x + 2; y-intercept = 2; x-intercepts = 2±√(4+8)/–2 = 2±2√3/–2 = –1±√3.
■
💬 SOLUTION:
4x2 + 3y2 = 12; y-intercepts = –2, 2; x-intercepts = –√3, √3.
Symmetric with respect to the x-axis, y-axis, and origin.
■
💬 SOLUTION:
x2 – y2 = 4; x-intercepts = –2, 2.
Symmetric with respect to the x-axis, y-axis, and origin.
■
💬 SOLUTION:
x2 + (y – 1)2 = 9; y-intercepts = –2, 4; x-intercepts = –2√2, 2√2.
Symmetric with respect to the y-axis.
■
BACA JUGA:
|
|
💬 SOLUTION:
4(x – 1)2 + y2 = 36; y-intercepts = ±√32 = ±4√2; x-intercepts = –2, 4.
Symmetric with respect to the x-axis.
■
💬 SOLUTION:
x2 – 4x + 3y2 = –2; x-intercepts = 2±√2.
Symmetric with respect to the x-axis.
■
💬 SOLUTION:
x2 + 9(y + 2)2 = 36; y-intercepts = –4, 0; x-intercept = 0.
Symmetric with respect to the y-axis.
■
💬 SOLUTION:
x4 + y4 = 1; y-intercepts = –1, 1; x-intercepts = –1, 1.
Symmetric with respect to the x-axis, y-axis, and origin.
■
💬 SOLUTION:
x4 + y4 = 16; y-intercepts = –2, 2; x-intercepts = –2, 2.
Symmetric with respect to the y-axis, x-axis and origin.
■
💬 SOLUTION:
y = x3 – x; y-intercept = 0; y = x(x2 – 1) = x(x + 1)(x – 1); x-intercepts = –1, 0, 1.
Symmetric with respect to the origin.
■
💬 SOLUTION:
y = 1/x2 + 1 ; y-intercept = 1.
Symmetric with respect to the y-axis.
■
BACA JUGA:
|
|
Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - 0.4 Number 1 - 21. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment