CHAPTER 0 PRELIMINARIES
SECTION 0.4 Graphs of Equations
Problem Set 0.4, Number 22 – 41.
In Problems 1–30, plot the graph of each equation. Begin by checking for symmetries and be sure to find all x- and y-intercepts.
- y = [x]/[x2 + 1]
- 2x2 – 4x + 3y2 + 12y = –2
- 4(x – 5)2 + 9(y + 2)2 = 36
- y = (x – 1)(x – 2)(x – 3)
- y = x2(x – 1)(x – 2)
- y = x2(x – 1)2
- y = x4(x – 1)4(x + 1)4
- |x| + |y| = 1
- |x| + |y| = 4
💬 SOLUTION:
x-intercept = 0.
Symmetric with respect to the origin.
■
💬 SOLUTION:
2(x2 – 2x + 1) + 3(y2 + 4y + 4) = –2 + 2 + 12
2(x – 1)2 + 3(y + 2)2 = 12
y-intercepts = –2 ± ([√(30)]/[3])
x-intercept = 1
■
💬 SOLUTION:
4(x – 5)2 + 9(y + 2)2 = 36; x-intercept = 5
■
💬 SOLUTION:
y = (x – 1)(x – 2)(x – 3); y-intercept = –6
x-intercepts = 1, 2, 3
■
💬 SOLUTION:
y = x2(x – 1)(x – 2); y-intercept = 0
x-intercepts = 0, 1, 2
■
💬 SOLUTION:
y = x2(x – 1)2; y-intercept = 0
x-intercepts = 0, 1
■
💬 SOLUTION:
y = x4(x – 1)4(x + 1)4; y-intercept = 0
x-intercepts = –1, 0, 1
Symmetric with respect to the y-axis
■
💬 SOLUTION:
|x| + |y| = 1; y-intercepts = –1, 1;
x-intercepts = –1, 1
Symmetric with respect to the x-axis, y-axis and origin
■
💬 SOLUTION:
|x| + |y| = 4; y-intercepts = –4, 1;
x-intercepts = –4, 1
Symmetric with respect to the x-axis, y-axis and origin
■
BACA JUGA:
|
|
In Problems 31–38, plot the graphs of both equations on the same coordinate plane. Find and label the points of intersection of the two graphs (see Example 4).
- y = –x + 1
- y = 2x + 3
- y = –2x + 3
- y = –2x + 3
- y = x
- y = x – 1
- y – 3x = 1
- y = 4x + 3
y = (x + 1)2
💬 SOLUTION:
–x + 1 = (x + 1)2
–x + 1 = x2 + 2x + 1
x2 + 3x = 0
x(x + 3) = 0
x = 0, –3
Intersection points: (0, 1) and (–3, 4)
■
y = –(x – 1)2
💬 SOLUTION:
2x + 3 = –(x – 1)2
2x + 3 = –x2 + 2x – 1
x2 + 4 = 0
No Points of intersection
■
y = –2(x – 4)2
💬 SOLUTION:
–2x + 3 = –2(x – 4)2
–2x + 3 = –2x2 + 16x – 32
2x2 – 18x + 35 = 0
x = [18 ± √(324 – 280)]/[4]
x = [18 ± 2√(11)]/[4]
x = [9 ± √(11)]/[2];
Intersection points:
([9 – √(11)]/[2], –6 + √(11)), ([9 + √(11)]/[2], –6 – √(11))
y = 3x2 – 3x + 12
💬 SOLUTION:
–2x + 3 = 3x2 – 3x + 12
3x2 – x + 9 = 0
No points of intersection
x2 + y2 = 4
💬 SOLUTION:
x2 + x2 = 4
x2 = 2
x = ±√(2)
Intersection points: (–√(2), –√(2)), (√(2), √(2))
2x2 + 3y2 = 12
💬 SOLUTION:
2x2 + 3(x – 1)2 = 12
2x2 + 3x2 – 6x + 3 = 12
5x2 – 6x – 9 = 0
x = [6 ± √(36 + 180)]/[10]
x = [6 ± 6√(6)]/[10]
x = [3 ± 3√(6)]/[5]
Intersection points:
([3 – 3√(6)]/[5], [–2 – 3√(6)]/[5]), ([3 + 3√(6)]/[5], [–2 + 3√(6)]/[5])
BACA JUGA:
|
|
x2 + 2x + y2 = 15
💬 SOLUTION:
y = 3x + 1
x2 + 2x + (3x + 1)2 = 15
x2 + 2x + 9x2 + 6x + 1 = 15
10x2 + 8x – 14 = 0
2(5x2 + 4x – 7) = 0
x = [–2 ± √(36)]/[5] ≈ –1.65, 0.85
Intersection points:
([–2 – √(39)]/[5], [–1 – 3√(39)]/[5]) and ([–2 + √(39)]/[5], [–1 + 3√(39)]/[5])
[or roughly (–1.65, –3.95) and (0.85, 3.55)]
x2 + y2 = 81
💬 SOLUTION:
x2 + (4x + 3)2 = 81
x2 + 16x2 + 24x + 9 = 81
17x2 + 24x – 72 = 0
x = [–12 ± √(38)]/[17] ≈ –2.88, 1.47
Intersection points:
([–12 – √(38)]/[17], [3 – 24√(38)]/[17]) and ([–12 + √(38)]/[17], [3 + 24√(38)]/[17])
[or roughly (–2.88, –8.52) and (1.47, 8.88)]
- Choose the equation that corresponds to each graph in Figure 8.
- Find the distance between the points on the circle x2 + y2 = 13 with the x-coordinates –2 and 2. How many such distances are there?
- Find the distance between the points on the circle x2 + 2x + y2 – 2y = 20 with the x-coordinates –2 and 2. How many such distances are there?
(a) y = ax2, with a > 0
(b) y = ax3 + bx3 + cx + d, with a > 0
(c) y = ax3 + bx3 + cx + d, with a < 0
(d) y = ax3, with a > 0
💬 SOLUTION:
(a) y = ax2, with a > 0 ; (2)
(b) y = ax3 + bx3 + cx + d, with a > 0 ; (1)
(c) y = ax3 + bx3 + cx + d, with a < 0 ; (3)
(d) y = ax3, with a > 0 ; (4)
💬 SOLUTION:
x2 + y2 = 13; (–2, –3), (–2, 3), (2, –3), (2, 3)
d1 = √[(2 + 2)2 + (–3 + 2)2] = 4
d2 = √[(2 + 2)2 + (–3 – 3)2] = √(54) = 2√(13)
d3 = √[(2 – 2)2 + (3 + 3)2] = 6
Three such distances.
💬 SOLUTION:
x2 + 2x + y2 – 2y = 20; (–2, 1 + √(21)), (–2, 1 – √(21)), (2, 1 + √(13)), (2, 1 – √(13))
d1 = √[(–2 – 2)2 + [1 + √(21) – (1 + √(13))]2]
d1 = √[16 + (√(21) – √(13))2]
d1 = √[50 – 2√(273)] ≈ 4.12
d2 = √[(–2 – 2)2 + [1 + √(21) – (1 – √(13))]2]
d2 = √[16 + (√(21) + √(13))2]
d2 = √[50 + 2√(273)] ≈ 9.11
d3 = √[(–2 + 2)2 + [1 + √(21) – (1 – √(13))]2]
d3 = √[0 + (√(21) + √(21))2] = √[(2√(21))2]
d3 = 2√(21) ≈ 9.17
d4 = √[(–2 – 2)2 + [1 – √(21) – (1 + √(13))]2]
d4 = √[16 + (–√(21) – √(13))2]
d4 = √[50 + 2√(273)] ≈ 9.11
d5 = √[(–2 – 2)2 + [1 – √(21) – (1 – √(13))]2]
d5 = √[16 + (√(13) – √(21))2]
d5 = √[50 – 2√(273)] ≈ 4.12
d6 = √[(2 – 2)2 + [1 + √(13) – (1 – √(13))]2]
d6 = √[0 + (√(13) + √(13))2] = √[(2√(13))2]
d6 = 2√(13) ≈ 7.21
Four such distances (d2 = d4 and d1 = d5).
BACA JUGA:
|
|
Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - 0.4 Number 22 - 41. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment