Kunci Jawaban dan Pembahasan Soal || Buku Calculus 9th Purcell Chapter 0 - 0.4 Number 22 – 41

Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 Section 0.4

CHAPTER 0 PRELIMINARIES

SECTION 0.4 Graphs of Equations


Problem Set 0.4, Number 22 – 41.
In Problems 1–30, plot the graph of each equation. Begin by checking for symmetries and be sure to find all x- and y-intercepts.
  1. y = [x]/[x2 + 1]
  2. 💬 SOLUTION:
    x-intercept = 0.
    Symmetric with respect to the origin.
    Number 22

  3. 2x2 – 4x + 3y2 + 12y = –2
  4. 💬 SOLUTION:
    2(x2 – 2x + 1) + 3(y2 + 4y + 4) = –2 + 2 + 12
    2(x – 1)2 + 3(y + 2)2 = 12
    y-intercepts = –2 ± ([√(30)]/[3])
    x-intercept = 1
    Number 23

  5. 4(x – 5)2 + 9(y + 2)2 = 36
  6. 💬 SOLUTION:
    4(x – 5)2 + 9(y + 2)2 = 36; x-intercept = 5
    Number 24

  7. y = (x – 1)(x – 2)(x – 3)
  8. 💬 SOLUTION:
    y = (x – 1)(x – 2)(x – 3); y-intercept = –6
    x-intercepts = 1, 2, 3
    Number 25

  9. y = x2(x – 1)(x – 2)
  10. 💬 SOLUTION:
    y = x2(x – 1)(x – 2); y-intercept = 0
    x-intercepts = 0, 1, 2
    Number 26

  11. y = x2(x – 1)2
  12. 💬 SOLUTION:
    y = x2(x – 1)2; y-intercept = 0
    x-intercepts = 0, 1
    Number 27

  13. y = x4(x – 1)4(x + 1)4
  14. 💬 SOLUTION:
    y = x4(x – 1)4(x + 1)4; y-intercept = 0
    x-intercepts = –1, 0, 1
    Symmetric with respect to the y-axis
    Number 28

  15. |x| + |y| = 1
  16. 💬 SOLUTION:
    |x| + |y| = 1; y-intercepts = –1, 1;
    x-intercepts = –1, 1
    Symmetric with respect to the x-axis, y-axis and origin
    Number 29

  17. |x| + |y| = 4
  18. 💬 SOLUTION:
    |x| + |y| = 4; y-intercepts = –4, 1;
    x-intercepts = –4, 1
    Symmetric with respect to the x-axis, y-axis and origin
    Number 30

Semoga Bermanfaat 😁

In Problems 31–38, plot the graphs of both equations on the same coordinate plane. Find and label the points of intersection of the two graphs (see Example 4).
  1. y = –x + 1
  2. y = (x + 1)2
    💬 SOLUTION:
    x + 1 = (x + 1)2
    x + 1 = x2 + 2x + 1
    x2 + 3x = 0
    x(x + 3) = 0
    x = 0, –3
    Intersection points: (0, 1) and (–3, 4)
    Number 31

  3. y = 2x + 3
  4. y = –(x – 1)2
    💬 SOLUTION:
    2x + 3 = –(x – 1)2
    2x + 3 = –x2 + 2x – 1
    x2 + 4 = 0
    No Points of intersection
    Number 32

  5. y = –2x + 3
  6. y = –2(x – 4)2
    💬 SOLUTION:
    –2x + 3 = –2(x – 4)2
    –2x + 3 = –2x2 + 16x – 32
    2x2 – 18x + 35 = 0
    x = [18 ± √(324 – 280)]/[4]
    x = [18 ± 2√(11)]/[4]
    x = [9 ± √(11)]/[2];
    Intersection points:
    ([9 – √(11)]/[2], –6 + √(11)), ([9 + √(11)]/[2], –6 – √(11))
    Number 33
  7. y = –2x + 3
  8. y = 3x2 – 3x + 12
    💬 SOLUTION:
    –2x + 3 = 3x2 – 3x + 12
    3x2x + 9 = 0
    No points of intersection
    Number 34
  9. y = x
  10. x2 + y2 = 4
    💬 SOLUTION:
    x2 + x2 = 4
    x2 = 2
    x = ±√(2)
    Intersection points: (–√(2), –√(2)), (√(2), √(2))
    Number 35
  11. y = x – 1
  12. 2x2 + 3y2 = 12
    💬 SOLUTION:
    2x2 + 3(x – 1)2 = 12
    2x2 + 3x2 – 6x + 3 = 12
    5x2 – 6x – 9 = 0
    x = [6 ± √(36 + 180)]/[10]
    x = [6 ± 6√(6)]/[10]
    x = [3 ± 3√(6)]/[5]
    Intersection points:
    ([3 – 3√(6)]/[5], [–2 – 3√(6)]/[5]), ([3 + 3√(6)]/[5], [–2 + 3√(6)]/[5])
    Number 36

    Semoga Bermanfaat 😁

  13. y – 3x = 1
  14. x2 + 2x + y2 = 15
    💬 SOLUTION:
    y = 3x + 1
    x2 + 2x + (3x + 1)2 = 15
    x2 + 2x + 9x2 + 6x + 1 = 15
    10x2 + 8x – 14 = 0
    2(5x2 + 4x – 7) = 0
    x = [–2 ± √(36)]/[5] ≈ –1.65, 0.85
    Intersection points:
    ([–2 – √(39)]/[5], [–1 – 3√(39)]/[5]) and ([–2 + √(39)]/[5], [–1 + 3√(39)]/[5])
    [or roughly (–1.65, –3.95) and (0.85, 3.55)]
    Number 37
  15. y = 4x + 3
  16. x2 + y2 = 81
    💬 SOLUTION:
    x2 + (4x + 3)2 = 81
    x2 + 16x2 + 24x + 9 = 81
    17x2 + 24x – 72 = 0
    x = [–12 ± √(38)]/[17] ≈ –2.88, 1.47
    Intersection points:
    ([–12 – √(38)]/[17], [3 – 24√(38)]/[17]) and ([–12 + √(38)]/[17], [3 + 24√(38)]/[17])
    [or roughly (–2.88, –8.52) and (1.47, 8.88)]
    Number 38
  1. Choose the equation that corresponds to each graph in Figure 8.
  2. (a) y = ax2, with a > 0
    (b) y = ax3 + bx3 + cx + d, with a > 0
    (c) y = ax3 + bx3 + cx + d, with a < 0
    (d) y = ax3, with a > 0
    Number 39
    💬 SOLUTION:
    (a) y = ax2, with a > 0 ; (2)
    (b) y = ax3 + bx3 + cx + d, with a > 0 ; (1)
    (c) y = ax3 + bx3 + cx + d, with a < 0 ; (3)
    (d) y = ax3, with a > 0 ; (4)

  3. Find the distance between the points on the circle x2 + y2 = 13 with the x-coordinates –2 and 2. How many such distances are there?
  4. 💬 SOLUTION:
    x2 + y2 = 13; (–2, –3), (–2, 3), (2, –3), (2, 3)
    d1 = √[(2 + 2)2 + (–3 + 2)2] = 4
    d2 = √[(2 + 2)2 + (–3 – 3)2] = √(54) = 2√(13)
    d3 = √[(2 – 2)2 + (3 + 3)2] = 6
    Three such distances.

  5. Find the distance between the points on the circle x2 + 2x + y2 – 2y = 20 with the x-coordinates –2 and 2. How many such distances are there?
  6. 💬 SOLUTION:
    x2 + 2x + y2 – 2y = 20; (–2, 1 + √(21)), (–2, 1 – √(21)), (2, 1 + √(13)), (2, 1 – √(13))
    d1 = √[(–2 – 2)2 + [1 + √(21) – (1 + √(13))]2]
    d1 = √[16 + (√(21) – √(13))2]
    d1 = √[50 – 2√(273)] ≈ 4.12
    d2 = √[(–2 – 2)2 + [1 + √(21) – (1 – √(13))]2]
    d2 = √[16 + (√(21) + √(13))2]
    d2 = √[50 + 2√(273)] ≈ 9.11
    d3 = √[(–2 + 2)2 + [1 + √(21) – (1 – √(13))]2]
    d3 = √[0 + (√(21) + √(21))2] = √[(2√(21))2]
    d3 = 2√(21) ≈ 9.17
    d4 = √[(–2 – 2)2 + [1 – √(21) – (1 + √(13))]2]
    d4 = √[16 + (–√(21) – √(13))2]
    d4 = √[50 + 2√(273)] ≈ 9.11
    d5 = √[(–2 – 2)2 + [1 – √(21) – (1 – √(13))]2]
    d5 = √[16 + (√(13) – √(21))2]
    d5 = √[50 – 2√(273)] ≈ 4.12
    d6 = √[(2 – 2)2 + [1 + √(13) – (1 – √(13))]2]
    d6 = √[0 + (√(13) + √(13))2] = √[(2√(13))2]
    d6 = 2√(13) ≈ 7.21
    Four such distances (d2 = d4 and d1 = d5).

Semoga Bermanfaat 😁

Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - 0.4 Number 22 - 41. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆

Ahmad Qolfathiriyus Firdaus

We are bantalmateri.com that utilizes the internet and digital media in delivering material, questions and even the form of discussion. In the current generation, online learning methods (commonly called daring) are considered closer to students who are very integrated and difficult to separate from technology. The emergence of technology has also facilitated the implementation of schools even though students and educators alike have to adapt.

No comments:

Post a Comment