Kunci Jawaban dan Pembahasan Soal || Buku Calculus 9th Purcell Chapter 1 - 1.3 Number 25 – 51

Pembahasan Soal Buku Calculus 9th Purcell Chapter 1 Section 1.1

CHAPTER 1 LIMITS

SECTION 1.3 Limit Theorems


Problem Set 1.3, Number 25 – 51.

Calculus 9th Purcell Chapter 1 - 1.3

    In Problems 25-30, find the limits if limxa f(x) = 3 and limxa g(x) = –1 (see Example 4).
  1. lim
    √[ f2(x) + g2(x)]
    xa
     
  2. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  3. lim
    2f(x) – 3g(x)
    xa
    f(x) + g(x)
  4. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  5. lim
    (g(x)) ⋅ [f(x) + 3]
    xa
     
  6. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  7. lim
    [f(x) – 3]⁴
    xa
     
  8. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  9. lim
    [ |f(t)) + |3g(t)| ]
    ta
     
  10. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  11. lim
    [f(u) + 3g(u)]3
    ua
     
  12. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


    Semoga Bermanfaat 😁

    In Problems 31-34, find limx2 [f(x) – f(2)] / (x – 2) for each given function f.
  13. f(x)
    =
    3x2
  14. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  15. f(x)
    =
    3x2 + 2x + 1
  16. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  17. f(x)
    =
    1
    x
  18. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  19. f(x)
    =
    3
    x2
  20. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  21. Prove Statement 6 of Theorem A. Hint:
  22. |f(x) g(x) – LM
    =
    |f(x) g(x) – Lg(x) + Lg(x) – LM
     
    =
    |g(x) [f(x) – L] + L [g(x) – M]|
     
    |g(x)| |f(x) – L| + |L| |g(x) – M|
    Now show that if limxc g(x) = M, then there is a number δ1 such that
    0 < |xc| < δ1 ⇒ |g(x)| < |M| + 1
    PEMBAHASAN:
    Suppose limxc f(x) = L and limxc g(x) = M.
    |f(x) g(x) – LM| ≤ |g(x)||f(x) – L| + |L||g(x) – M| as shown in the text.
    Choose ε1 = 1.
    Since limxc g(x) = M, there is some δ1 > 0 such that if 0 < |xc| < δ1, |g(x) – M| < ε1 = 1 or M – 1 < g(x) < M + 1.
    |M – 1| ≤ |M| + 1 and |M + 1| ≤ |M| + 1 so for 0 < |xc| < δ1, |g(x)| < |M| + 1.
    Choose ε > 0.
    Since limxc f(x) = L and limxc g(x) = M, there exist δ2 and δ3 such that 0 < |xc| < δ2 ⇒ |f(x) – L| < ε / (|L| + |M| + 1) and 0 < |xc| < δ3 ⇒ |g(x) – M| < ε / (|L| + |M| + 1).
    Let δ = min {δ1, δ2, δ3}, then 0 < |xc| < δ ⇒ |f(x) g(x) – LM| ≤ |g(x)||f(x) – L| + |L||g(x) – M| < (|M| + 1) ε / (|L| + |M| + 1) + |L| ε / (|L| + |M| + 1) = ε.
    Hence,
    limxc f(x)g(x) = LM = (limxc f(x))(limxc g(x))

  23. Prove Statement 7 of Theorem A by first giving an εδ proof that limxc [1/g(x)] = 1/[limxc g(x)] and then applying Statement 6.
  24. PEMBAHASAN:
    Say limxc g(x) = M, M ≠ 0, and choose ε1 = ½|M|.
    There is some δ1 > 0 such that
    0 < |xc| < δ1 ⇒ |g(x) – M| < ε = ½|M| or M – ½|M| < g(x) < M + ½|M|.
    |M – ½|M|| ≥ |½|M|| and |M + ½|M|| ≥ |½|M|| so |g(x)| > ½|M| and 1/|g(x)| < 2/|M|.
    Choose ε > 0.
    Since limxc g(x) = M there is δ2 > 0 such that
    0 < |xc| < δ2 ⇒ |g(x) – M| < ½M2.
    Let δ = min {δ1, δ2, then
    0 < |xc| < δ ⇒ |1/g(x)1/M|
    = |Mg(x)/g(x)M|
    = 1/|M||g(x)| ⋅ |g(x) – M| < 2/M2 ⋅ |g(x) – M|
    = 2/M2 ⋅ ½M2ε
    = ε
    Thus, limxc 1/g(x) = 1/M = 1/ limxc g(x).
    Using statement 6 and the above result,
    limxc f(x)/g(x) = limxc f(x) ⋅ limxc 1/g(x) = limxc f(x) ⋅ 1/ limxc g(x) = limxc f(x)/limxc g(x).

    Semoga Bermanfaat 😁

  25. Prove that limxc f(x) = L ⇔ limxc [f(x) – L] = 0.
  26. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  27. Proof that limxc f(x) = 0 ⇔ limxc |f(x)| = 0.
  28. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  29. Proof that limxc |x| = |c|.
  30. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  31. Find examples to show that if
  32. (a)
    limxc [f(x) + g(x)] exists, this does not imply that either limxc f(x) or limxc g(x) exists;
    (b)
    limxc [f(x) g(x)] exists, this does not imply that either limxc f(x) or limxc g(x) exists.
    PEMBAHASAN:
    a.
    If f(x) = (x + 1)/(x – 2), g(x) = (x – 5)/(x – 2) and c = 2, then limxc [f(x) + g(x)] exists, but neither limxc f(x) nor limxc g(x)] exists.
    b.
    If f(x) = 2/x, g(x) = x and c = 0, then limxc [f(x) + g(x)] exists, but neither limxc f(x) does not exists.

  33. lim
    √(3 + x)
    x → –3+
    x
  34. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  35. lim
    √(π3 + x3)
    x → –π+
    x
  36. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


    Semoga Bermanfaat 😁

  37. lim
    x – 3
    x → –3+
    √(x2 – 9)
  38. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  39. lim
    √(1 + x)
    x → 1
    4 + 4x
  40. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  41. lim
    (x2 + 1) x
    x → 2+
    (3x – 1)2
  42. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  43. lim
    (xx)
    x → 3
     
  44. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  45. lim
    x
    x → 0
    |x|
  46. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  47. Lim
    x2 + 2x
    x → 3+
     
  48. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  49. Suppose that f(x)g(x) = 1 for all x and limxa g(x) = 0. Prove that limxa f(x) does not exist.
  50. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  51. Let R be the rectangle joining the midpoint of the sides of the quadrilateral Q having vertices (±x, 0) and (0, ±1). Calculate.
  52. lim
    perimeter of R
    x → 0+
    perimeter of Q
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


  53. Let y = √x and consider the point M, N, O, and P with coordinates (1, 0), (0, 1), (0, 0), and (x, y) on the graph of y = √x, respectively. Calculate
  54. (a)
    lim
    perimeter of ∆ NOP
    x → 0+
    perimeter of ∆ MOP
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


    (b)
    lim
    area of ∆ NOP
    x → 0+
    area of ∆ MOP
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.3


Semoga Bermanfaat 😁

Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 1 - 1.3 Limit Theorems - Number 25 – 51. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆

Ahmad Qolfathiriyus Firdaus

We are bantalmateri.com that utilizes the internet and digital media in delivering material, questions and even the form of discussion. In the current generation, online learning methods (commonly called daring) are considered closer to students who are very integrated and difficult to separate from technology. The emergence of technology has also facilitated the implementation of schools even though students and educators alike have to adapt.

No comments:

Post a Comment