Kunci Jawaban dan Pembahasan Soal || Buku Calculus 9th Purcell Chapter 0 - 0.5 Number 1 – 30

Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 Section 0.5

CHAPTER 0 PRELIMINARIES

SECTION 0.5 Functions and Their Graphs


Calculus 9th Purcell Chapter 0 - 0.5

Problem Set 0.5, Number 1 – 30.
  1. For f(x) = 1 – x2 find each value.
  2. (a)
    f(1)
    (b)
    f(–2)
    (c)
    f(0)
    (d)
    f(k)
    (e)
    f(–5)
    (f)
    f1/4
    (g)
    f(1 + h)
    (h)
    f(1 + h) – f(1)
    (i)
    f(2 + h) – f(2)
    💬 SOLUTION:
    a.
    f(1) = 1 – 12 = 0
    b.
    f(–2) = 1 – (–2)2 = –3
    c.
    f(0) = 1 – 02 = 1
    d.
    f(k) = 1 – k2
    e.
    f(–5) = 1 – (–5)2 = –24
    f.
    f(1/4) = 1 – (1/4)2 = 1 – 1/16 = 15/16
    g.
    f(1 + h) = 1 – (1 + h)2 = –2hh2
    h.
    f(1 + h) – f(1) = –2hh2 – 0 = –2hh2
    i.
    f(2 + h) – f(2) = 1 – (2 + h)2 + 3 = –4hh2

  3. For F(x) = x3 + 3x , find each value.
  4. (a)
    F(1)
    (b)
    F(√(2))
    (c)
    F(1/4)
    (d)
    F(1 + h)
    (e)
    F(1 + h) – F(1)
    (f)
    F(2 + h) – F(2)
    💬 SOLUTION:
    a.
    F(1) = 13 + 3 × 1 = 4
    b.
    F(√(2)) = (√(2))3 + 3(√(2)) = 2√(2) + 3√(2) = 5√(2)
    c.
    F(1/4) = (1/4)3 + 3(1/4) = 1/64 + 3/4 = 49/64
    d.
    F(1 + h) = (1 + h)3 + 3(1 + h)
    F(1 + h) = 1 + 3h + 3h2 + h3 + 3 + 3h
    F(1 + h) = 4 + 6h + 3h2 + h3
    e.
    F(1 + h) – 1 = 3 + 6h + 3h2 + h3
    f.
    F(2 + h) – F(2)
    = (2 + h)3 + 3(2 + h) – [23 – 3(2)]
    = 8 + 12h + 6h2 + h3 + 6 + 3h – 14
    = 15h + 6h2 + h3

  5. For G(y) = 1/(y – 1) find each value.
  6. (a)
    G(0)
    (b)
    G(0.999)
    (c)
    G(1.01)
    (d)
    G(y2)
    (e)
    G(–x)
    (f)
    G(1/x2)
    💬 SOLUTION:
    a.
    G(0) = 1/(0 – 1) = –1
    b.
    G(0.999) = 1/(0.999 – 1) = –1000
    c.
    G(1.01) = 1/(1.01 – 1) = 100
    d.
    G(y2) = 1/(y2 – 1)
    e.
    G(–x) = 1/(–x – 1) = – [1/(x + 1)]
    f.
    G(1/(x2)) = 1/([1/(x2)] – 1) = (x2)/(1 – x2)

  7. For Φ(u) = (u + u2)/(√(u)), find each value. (Φ is the uppercase Greek letter phi.)
  8. (а)
    Φ(1)
    (b)
    Φ(–t)
    (c)
    Φ(1/2)
    (d)
    Φ(u + 1)
    (e)
    Φ(x2)
    (f)
    Φ(x2 + x)
    💬 SOLUTION:
    a.
    Φ(1) = (1 + 12)/(√(1)) = 2
    b.
    Φ(–t) = (–t + (–t)2)/(√(–t)) = (t2t)/(√(–t))
    c.
    Φ(1/2) = (1/2 + (1/2)2)/(√(1/2)) = 3/4/(√(1/2)) ≈ 1.06
    d.
    Φ(u + 1) = ((u + 1) + (u + 1)2)/(√(u + 1)) = (u2 + 3u + 2)/(√(u + 1))
    e.
    Φ(x2) = ((x2) + (x2)2)/(√(x2)) = (x2 + x4)/|x|
    f.
    Φ(x2 + x) = ((x2 + x) + (x2 + x)2)/(√(x2 + x)) = (x4 + 2x3 + 2x2 + x)/(√(x2 + x))

  9. For
  10. f(x)
    =
    1
    √(x – 3)
    find each value.
    a.
    f(0.25)
    b.
    f(π)
    c.
    f(3 + √(2))
    💬 SOLUTION:
    a.
    f(0.25)
    =
    1
    √(0.25 – 3)
    f(0.25)
    =
    1
    √(–2.75)
    is not defined
    b.
    f(x)
    =
    1
    √(π – 3)
    f(x)
    2.658
    c.
    f(3 + √(2))
    =
    1
    √(3 + √(2) – 3)
    f(3 + √(2))
    =
    1
    √(√(2))
    f(3 + √(2))
    =
    2–0.25
    f(3 + √(2))
    0.841

  11. For
  12. f(x)
    =
    √(x2 + 9)
    x – √(3)
    find each value.
    a.
    f(0.79)
    b.
    f(12.26)
    c.
    f(√(3))
    💬 SOLUTION:
    a.
    f(0.79)
    =
    √((0.79)2 + 9)
    0.79 – √(3)
     
    –3.293
    b.
    f(12.26)
    =
    √((12.26)2 + 9)
    12.26 – √(3)
     
    1.199
    c.
    f(√(3))
    =
    √((√(3))2 + 9)
    √(3) – √(3)
     
    ;
    undefined

  13. Which of the following determine a function f with formula y = f(x)? For those that do, find f(x). Hint: Solve for y in terms of x and note that the definition of a function requires a single y for each x.
  14. a.
    x2 + y2 = 1
    b.
    xy + y + x = 1, x –1
    c.
    x = √(2y + 1)
    d.
    x = y/(y + 1)
    💬 SOLUTION:
    a.
    x2 + y2
    =
    1
    y2
    =
    1 – x2
    y
    =
    ±√(1 – x2)
     
    ;
    not a function
    b.
    xy + y + x
    =
    1
    y(x + 1)
    =
    1 – x
    y =
    1 – x
    x + 1
    ; f(x) =
    1 – x
    x + 1
    c.
    x
    =
    √(2y + 1)
    x2
    =
    2y + 1
    y =
    x2 – 1
    2
    ; f(x) =
    x2 – 1
    2
    d.
    x  =
    y
    y + 1
    xy + x
    =
    2y + 1
    x
    =
    y – xy
    x
    =
    y(1 – x)
    y  =
    x
    1 – x
    ; f(x)  =
    x
    1 – x

  15. Which of the graphs in Figure 12 are graphs of functions?
  16. Figure 12
    This problem suggests a rule: For a graph to be the graph of a function, each vertical line must meet the graph in at most one point.
    💬 SOLUTION:
    The graphs on the left are not graphs of functions, the graphs on the right are graphs of functions.

  17. For f(x) = 2x2 – 1, find and simplify [f(a + h) – f(a)]/h.
  18. 💬 SOLUTION:
    f(a + h) – f(a)
    =
    [2(a + h)2 – 1] – (2a2 – 1)
    h
    h
     
    =
    4ah + 2h2
     
    h
     
    =
    4a + 2h

  19. For F(t) = 2t3, find and simplify [F(a + h) – f(a)]/h.
  20. 💬 SOLUTION:
    F(a + h) – F(a)
    =
    4(a + h)3 – 4a3
    h
    h
     
    =
    4a3 + 12a2h + 12ah2 + 4h3 – 4a3
    h
     
    =
    12a2h + 12ah2 + 4h3
    h
     
    =
    12a2 + 12ah + 4h2

Semoga Bermanfaat 😁

  1. For g(u) = 3/(u – 2), find and simplify [g(x + h) – f(x)]/h.
  2. 💬 SOLUTION:
    g(x + h) – g(x)
     
    3
    3
    =
    x + h – 2
    x – 2
    h
    h
     
     
    3x – 6 – 3x – 3h + 6
    =
    x2 – 4x + hx – 2h + 4
    h
     
    =
    –3h
    h(x2 – 4x + hx – 2h + 4)
     
    =
    3
    x2 – 4x + hx – 2h + 4

  3. For G(t) = t/(t + 4), find and simplify [G(a + h) – f(a)]/h.
  4. 💬 SOLUTION:
    G(a + h) – G(x)
     
    a + h
    a
    =
    a + h + 4
    a + 4
    h
    h
     
     
    a2 + 4a + ah + 4ha2ah – 4a
    =
    a2 + 8a + ah + 4h + 16
    h
     
    =
    4h
    h(a2 + 8a + ah + 4h + 16)
     
    =
    4
    a2 + 8a + ah + 4h + 16

  5. Find the natural domain for each of the following.
  6. a.
    F(z) = √(2z + 3)
    b.
    G(v) = 1/(4v – 1)
    c.
    Ψ(x) = √(x2 – 9)
    d.
    H(y) = – √(625 – y4)
    💬 SOLUTION:
    a. F(z) = √(2z + 3)
    2z + 3 ≥ 0; z ≥ –(3/2)
    Domain: {z ∈ ℝ : z ≥ –(3/2)}
    b. g(v) = 1/(4v – 1)
    4v – 1 = 0; v = ¼
    Domain: {v ∈ ℝ : v ≠ ¼}
    c. Ψ(x) = √(x2 – 9)
    x2 – 9 ≥ 0; x2 ≥ 9; |x| ≥ 3
    Domain: {x ∈ ℝ : |x| ≥ 3}
    d. H(y) = –√(625 – y4)
    625 – y4 ≥ 0; 625 ≥ y4; |y| ≤ 5
    Domain: {y ∈ ℝ : |y| ≤ 5}

  7. Find the natural domain in each case.
  8. a.
    f(x) = (4 – x2)/(x2x – 6)
    b.
    G(y) = √(y + 1)–1
    c.
    Φ(u) = |2u + 3|
    d.
    F(t) = t2/3 – 4
    💬 SOLUTION:
    a. f(x) = (4 – x2)/(x2x – 6) = (4 – x2)/[(x – 3)(x + 2)]
    Domain: {x ∈ ℝ : x ≠ –2, 3}
    b. G(y) = √[(y + 1)–1]
    1/(y + 1) ≥ 0; y > –1
    Domain: {y ∈ ℝ : y > –1}
    c. Φ(u) = |2u + 3|
    Domain: ℝ (all real numbers)
    d. F(t) = t2/3 – 4
    Domain: ℝ (all real numbers)

    In Problems 15–30, specify whether the given function is even, odd, or neither, and then sketch its graph.
  9. f(x) = – 4
  10. 💬 SOLUTION:
    f(x) = –4; f(–x) = –4; even function

    Number 15

  11. f(x) = 3x
  12. 💬 SOLUTION:
    f(x) = 3x; f(–x) = –3x; odd function

    Number 16

  13. F(x) = 2x + 1
  14. 💬 SOLUTION:
    F(x) = 2x + 1; F(–x) = –2x + 1; neither

    Number 17

  15. F(x) = 3x – √2
  16. 💬 SOLUTION:
    F(x) = 3x – √2; F(–x) = –3x – √2; neither

    Number 18

  17. g(x) = 3x2 + 2x – 1
  18. 💬 SOLUTION:
    g(x) = 3x2 + 2x – 1; g(–x) = 3x2 – 2x – 1; neither

    Number 19

  19. g(u) = u3/8
  20. 💬 SOLUTION:
    g(u) = u3/8; g(–u) = –(u3/8); odd function

    Number 20

Semoga Bermanfaat 😁

  1. g(x) = x/(x2 – 1)
  2. 💬 SOLUTION:
    g(x) = x/(x2 – 1); g(–x) = (–x)/(x2 – 1); odd

    Number 21

  3. Φ(z) = (2z + 1)/(z – 1)
  4. 💬 SOLUTION:
    Φ(z) = (2z + 1)/(z – 1); Φ(–z) = (–2z + 1)/(–z – 1); neither

    Number 22

  5. f(w) = √(w – 1)
  6. 💬 SOLUTION:
    f(w) = √(w – 1); f(–w) = √(–w – 1); neither

    Number 23

  7. h(x) = √(x2 + 4)
  8. 💬 SOLUTION:
    h(x) = √(x2 + 4); h(–x) = √(x2 + 4); even function

    Number 24

  9. f(x) = |2x|
  10. 💬 SOLUTION:
    f(x) = |2x|; f(–x) = |–2x| = |2x|; even function

    Number 25

  11. F(t) = –|t + 3|
  12. 💬 SOLUTION:
    F(t) = –|t + 3|; F(–t) = –|–t + 3|; neither

    Number 26

  13. g(x) = 〚x/2〛
  14. 💬 SOLUTION:
    g(x) = 〚x/2〛; g(–x) = 〚–x/2〛; neither

    Number 27

  15. G(x) = 〚2x – 1〛
  16. 💬 SOLUTION:
    G(x) = 〚2x – 1〛; G(–x) = –〚2x – 1〛; neither

    Number 28

  17. g(t)
    =
    {
    1
    if t ≤ 0
    t + 1
    if 0 < t < 2
    t2 – 1
    if t ≥ 2
    💬 SOLUTION:
    g(t)
    =
    {
    1
    if t ≤ 0
    t + 1
    if 0 < t < 2
    t2 – 1
    if t ≥ 2
    ; neither

    Number 29

  18. h(x)
    =
    {
    x2 + 4
    if x ≤ 1
    3x
    if x > 1
    💬 SOLUTION:
    h(x)
    =
    {
    x2 + 4
    if x ≤ 1
    3x
    if x > 1
    ; neither

    Number 30

Semoga Bermanfaat 😁

Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - 0.5 Number 1 – 30. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆

Ahmad Qolfathiriyus Firdaus

We are bantalmateri.com that utilizes the internet and digital media in delivering material, questions and even the form of discussion. In the current generation, online learning methods (commonly called daring) are considered closer to students who are very integrated and difficult to separate from technology. The emergence of technology has also facilitated the implementation of schools even though students and educators alike have to adapt.

No comments:

Post a Comment