CHAPTER 0 PRELIMINARIES
SECTION 0.6 Operations on Functions
Problem Set 0.6, Number 1 – 21.
- For f(x) = x + 3 and g(x) = x2 find each value (if possible).
- For f(x) = x2 + x and g(x) = 2 / (x + 3) , find each value.
- For Φ(u) = u3 + 1 and ψ(v) = 1 / v, find each value.
- If f(x) = √(x2 – 1) and g(x) = 2 / x, find formulas for the following and state their domains.
- If f(s) = √(s2 – 4) and g(w) = |1 + w|, find formulas for (f ◦ g)(x) and (g ◦ f)(x).
- If g(x) = x2 + 1, find formulas for g3(x) and (g ◦ g ◦ g)(x).
- Calculate g(3.141) if g(u)=√(u3 + 2u).2 + u
- Calculate g(2.03) if g(x)=[√x – ∛x]4.1 – x + x2
- Calculate [g2(π) – g(π)]1/3 if g(v) = |11 – 7v|.
- Calculate [g3(π) – g(π)]1/3 if g(x) = |6x – 11|.
- Find f and g so that F = g ◦ f. (See Example 3.)
- Find f and g so that p = f ◦ g.
- Write p(x) = 1 / (√(x2 + 1)) as a composite of three functions in two different ways.
- Write p(x) = 1 / (√(x2 + 1)) as a composite of four functions.
- Sketch the graph of f(x) = √(x – 2) – 3 by first sketching g(x) = √(x) and then translating. (See Example 4.)
- Sketch the graph of g(x) = |x + 3| – 4 by first sketching h(x) = |x| and then translating.
- Sketch the graph of f(x) = (x – 2)2 – 4 using translations.
- Sketch the graph of g(x) = (x + 1)3 – 3 using translations.
- Sketch the graphs of f(x) = (x – 3) / 2 and g(x) = √(x) using the same coordinate axes. Then sketch f + g by adding y-coordinates.
- Follow the directions of Problem 19 for f(x) = x and g(x) = |x|.
- Sketch the graph of F(t)=|t| – t.t
(a)
|
(f
+ g)(2)
|
(b)
|
(f
· g)(0)
|
(c)
|
(g
/ f)(3)
|
(d)
|
(f
◦ g)(1)
|
(e)
|
(g
◦ f)(1)
|
(f)
|
(g
◦ f)(–8)
|
💬 SOLUTION:
(a)
|
(f
+ g)(2) = (2 + 3) + 22 = 9
|
(b)
|
(f
· g)(0) = (0 + 3)(02) = 0
|
(c)
|
(g
/ f)(3) = 32 / [3 + 3] = 9/6 = 3/2
|
(d)
|
(f
◦ g)(1) = f(12) = 1 + 3 = 4
|
(e)
|
(g
◦ f)(1) = g(1 + 3) = 42 = 16
|
(f)
|
(g
◦ f)(–8) = g(–8 + 3) = (–5)2 = 25
|
(a)
|
(f
– g)(2)
|
(b)
|
(f
/ g)(1)
|
(c)
|
g2(3)
|
(d)
|
(f
◦ g)(1)
|
(e)
|
(g
◦ f)(1)
|
(f)
|
(g
◦ g)(3)
|
💬 SOLUTION:
(a)
|
(f
– g)(2) = (22 + 2) – [2 / (2 + 3)] = 6 – [2 / 5] = 28/5
|
(b)
|
(f
/ g)(1) = [12 + 1] / [2 / (1 + 3)] = [2] / [2 / 4] = 4
|
(c)
|
g2(3) = [(2 / (3 +
3))]2 = [1 / 3]2 = 1/9
|
(d)
|
(f
◦ g)(1) = f[(2) / (1 + 3)] = [1/2]2 + [1/2] = ¾
|
(e)
|
(g
◦ f)(1) = g(12 + 1) = (2) / (2 + 3) = 2/5
|
(f)
|
(g
◦ g)(3) = g[2 / (3 + 3)] = (2) / [(1/3) + 3] = (2) / [10/3] = 3/5
|
(a)
|
(Φ
+ ψ)(t)
|
(b)
|
(Φ
◦ ψ)(r)
|
(c)
|
(ψ
◦ Φ)(r)
|
(d)
|
Φ3(z)
|
(e)
|
(Φ
– ψ)(5t)
|
(f)
|
((Φ
– ψ) ◦ ψ)(t)
|
💬 SOLUTION:
(a)
|
(Φ
+ ψ)(t) = t3 + 1 + (1/t)
|
(b)
|
(Φ
◦ ψ)(r) = Φ(1/r) = (1/r)3 + 1 = (1/r3)
+ 1
|
(c)
|
(ψ
◦ Φ)(r) = ψ(r3 + 1) = (1) / [r3 +
1]
|
(d)
|
Φ3(z)
= (z3 + 1)3
|
(e)
|
(Φ
– ψ)(5t) = [(5t)3 + 1] – [1/5t] = 125t3
+ 1 – [1/5t]
|
(f)
|
((Φ
– ψ) ◦ ψ)(t) = (Φ – ψ)(1/t) = (1/t)3 + 1 – [1
/ (1/t)] = (1/t3) + 1 – t
|
(a)
|
(f
∙ g)(x)
|
(b)
|
f4(x) + g4(x)
|
(c)
|
(f
◦ g)(x)
|
(d)
|
(g
◦ f)(x)
|
💬 SOLUTION:
(a)
|
(f
∙ g)(x) = [2√(x2 – 1)] / x
|
|
Domain:
(–∞, –1] ∪ [1, ∞)
|
(b)
|
f4(x) + g4(x)
= [√(x2 – 1)]4 + [2 / x]4
|
|
=
(x2 – 1)2 + [16 / x4]
|
|
Domain:
(–∞, 0) ∪ (0, ∞)
|
(c)
|
(f
◦ g)(x) = f(2 /x) = √[(2 / x)2
– 1] = √[(4 / x2) – 1]
|
|
Domain:
(–2, 0) ∪ (0, 2]
|
(d)
|
(g
◦ f)(x) = g[√(x2 – 1)] = 2 / √(x2
– 1)
|
|
Domain:
(–∞,–1) ∪ (1, ∞)
|
💬 SOLUTION:
-
|
(f
◦ g)(x) = f(|1 + x|) = √(|1 + x|2
– 4)
|
|
√(x2
+ 2x – 3)
|
-
|
(g
◦ f)(x) = g[√(x2 – 4)] = |1 + √(x2
– 4)|
|
|
1
+ √(x2 – 4)
|
💬 SOLUTION:
-
|
g3(x) = (x2
+ 1)3 = (x4 + 2x2 + 1)(x2
+ 1)
|
|
= x6
+ 3x4 + 3x2 + 1
|
-
|
(g
◦ g ◦ g)(x) = (g ◦ g)(x2
+ 1)
|
|
= g[(x2
+ 1)2 + 1] = g(x4 + 2x2
+ 2)
|
|
=
(x4 + 2x2 + 2)2 + 1
|
|
= x8
+ 4x6 + 8x4 + 8x2 + 5
|
💬 SOLUTION:
g(3.141) ≈ 1.188
BACA JUGA:
|
|
💬 SOLUTION:
g(2.03) ≈ 0.000205
💬 SOLUTION:
[g2(π) – g(π)]1/3
|
= [(11 – 7π)2 – |11 – 7π|]1/3
|
≈ 4.789
|
💬 SOLUTION:
[g3(π) – g(π)]1/3
|
= [(6π – 11)3 – (6π
– 11)]1/3
|
≈ 7.807
|
(a)
|
F(x) = √(x
+ 7)
|
(b)
|
F(x) = (x2
+ x)15
|
💬 SOLUTION:
(a)
|
g(x) = √x,
f(x) = x + 7
|
(b)
|
g(x) = x15,
f(x) = x2 + x
|
(a)
|
p(x)
|
=
|
2
|
|
(x2
+ x + 1)3
|
||||
(b)
|
p(x)
|
=
|
1
|
|
x3 + 3x
|
💬 SOLUTION:
(a)
|
f(x) = 2 /
x3, g(x) = x2 + x +
1
|
(b)
|
f(x) = 1 /
x, g(x) = x3 + 3x
|
💬 SOLUTION:
p = f ◦ g
◦ h if f(x) = 1 / x, g(x) = √(x),
h(x) = x2 + 1
|
p = f ◦ g
◦ h if f(x) = 1 / √(x), g(x) = x
+ 1, h(x) = x2
|
💬 SOLUTION:
p = f ◦ g
◦ h ◦ l if f(x) = 1 / x, g(x)
= √(x), h(x) = x + 1, l(x) = x2
|
BACA JUGA:
|
|
💬 SOLUTION:
💬 SOLUTION:
💬 SOLUTION:
💬 SOLUTION:
💬 SOLUTION:
💬 SOLUTION:
💬 SOLUTION:
BACA JUGA:
|
|
Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - 0.6 Number 1 – 21. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment