Kunci Jawaban dan Pembahasan Soal || Buku Calculus 9th Purcell Chapter 0 - 0.6 Number 1 – 21

Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 Section 0.6

CHAPTER 0 PRELIMINARIES

SECTION 0.6 Operations on Functions


Calculus 9th Purcell Chapter 0 - 0.6

Problem Set 0.6, Number 1 – 21.
  1. For f(x) = x + 3 and g(x) = x2 find each value (if possible).
  2. (a)
    (f + g)(2)
    (b)
    (f · g)(0)
    (c)
    (g / f)(3)
    (d)
    (fg)(1)
    (e)
    (gf)(1)
    (f)
    (gf)(–8)
    💬 SOLUTION:
    (a)
    (f + g)(2) = (2 + 3) + 22 = 9
    (b)
    (f · g)(0) = (0 + 3)(02) = 0
    (c)
    (g / f)(3) = 32 / [3 + 3] = 9/6 = 3/2
    (d)
    (fg)(1) = f(12) = 1 + 3 = 4
    (e)
    (gf)(1) = g(1 + 3) = 42 = 16
    (f)
    (gf)(–8) = g(–8 + 3) = (–5)2 = 25

  3. For f(x) = x2 + x and g(x) = 2 / (x + 3) , find each value.
  4. (a)
    (fg)(2)
    (b)
    (f / g)(1)
    (c)
    g2(3)
    (d)
    (fg)(1)
    (e)
    (gf)(1)
    (f)
    (gg)(3)
    💬 SOLUTION:
    (a)
    (fg)(2) = (22 + 2) – [2 / (2 + 3)] = 6 – [2 / 5] = 28/5
    (b)
    (f / g)(1) = [12 + 1] / [2 / (1 + 3)] = [2] / [2 / 4] = 4
    (c)
    g2(3) = [(2 / (3 + 3))]2 = [1 / 3]2 = 1/9
    (d)
    (fg)(1) = f[(2) / (1 + 3)] = [1/2]2 + [1/2] = ¾
    (e)
    (gf)(1) = g(12 + 1) = (2) / (2 + 3) = 2/5
    (f)
    (gg)(3) = g[2 / (3 + 3)] = (2) / [(1/3) + 3] = (2) / [10/3] = 3/5

  5. For Φ(u) = u3 + 1 and ψ(v) = 1 / v, find each value.
  6. (a)
    (Φ + ψ)(t)
    (b)
    (Φ ◦ ψ)(r)
    (c)
    (ψ ◦ Φ)(r)
    (d)
    Φ3(z)
    (e)
    (Φ – ψ)(5t)
    (f)
    ((Φ – ψ) ◦ ψ)(t)
    💬 SOLUTION:
    (a)
    (Φ + ψ)(t) = t3 + 1 + (1/t)
    (b)
    (Φ ◦ ψ)(r) = Φ(1/r) = (1/r)3 + 1 = (1/r3) + 1
    (c)
    (ψ ◦ Φ)(r) = ψ(r3 + 1) = (1) / [r3 + 1]
    (d)
    Φ3(z) = (z3 + 1)3
    (e)
    (Φ – ψ)(5t) = [(5t)3 + 1] – [1/5t] = 125t3 + 1 – [1/5t]
    (f)
    ((Φ – ψ) ◦ ψ)(t) = (Φ – ψ)(1/t) = (1/t)3 + 1 – [1 / (1/t)] = (1/t3) + 1 – t

  7. If f(x) = √(x2 – 1) and g(x) = 2 / x, find formulas for the following and state their domains.
  8. (a)
    (fg)(x)
    (b)
    f4(x) + g4(x)
    (c)
    (fg)(x)
    (d)
    (gf)(x)
    💬 SOLUTION:
    (a)
    (fg)(x) = [2√(x2 – 1)] / x
     
    Domain: (–∞, –1] [1, ∞)
    (b)
    f4(x) + g4(x) = [√(x2 – 1)]4 + [2 / x]4
     
    = (x2 – 1)2 + [16 / x4]
     
    Domain: (–∞, 0) (0, ∞)
    (c)
    (fg)(x) = f(2 /x) = √[(2 / x)2 – 1] = √[(4 / x2) – 1]
     
    Domain: (–2, 0) (0, 2]
    (d)
    (gf)(x) = g[√(x2 – 1)] = 2 / √(x2 – 1)
     
    Domain: (–∞,–1) (1, ∞)

  9. If f(s) = √(s2 – 4) and g(w) = |1 + w|, find formulas for (fg)(x) and (gf)(x).
  10. 💬 SOLUTION:
    -
    (fg)(x) = f(|1 + x|) = √(|1 + x|2 – 4)
     
    √(x2 + 2x – 3)
    -
    (gf)(x) = g[√(x2 – 4)] = |1 + √(x2 – 4)|
     
    1 + √(x2 – 4)

  11. If g(x) = x2 + 1, find formulas for g3(x) and (ggg)(x).
  12. 💬 SOLUTION:
    -
    g3(x) = (x2 + 1)3 = (x4 + 2x2 + 1)(x2 + 1)
     
    = x6 + 3x4 + 3x2 + 1
    -
    (ggg)(x) = (gg)(x2 + 1)
     
    = g[(x2 + 1)2 + 1] = g(x4 + 2x2 + 2)
     
    = (x4 + 2x2 + 2)2 + 1
     
    = x8 + 4x6 + 8x4 + 8x2 + 5

  13. Calculate g(3.141) if g(u)
    =
    √(u3 + 2u)
    .
    2 + u
  14. 💬 SOLUTION:
    g(3.141) ≈ 1.188

    Semoga Bermanfaat 😁

  15. Calculate g(2.03) if g(x)
    =
    [√xx]4
    .
    1 – x + x2
  16. 💬 SOLUTION:
    g(2.03) ≈ 0.000205

  17. Calculate [g2(π) – g(π)]1/3 if g(v) = |11 – 7v|.
  18. 💬 SOLUTION:
    [g2(π) – g(π)]1/3
    = [(11 – 7π)2 – |11 – 7π|]1/3
    ≈ 4.789

  19. Calculate [g3(π) – g(π)]1/3 if g(x) = |6x – 11|.
  20. 💬 SOLUTION:
    [g3(π) – g(π)]1/3
    = [(6π – 11)3 – (6π – 11)]1/3
    ≈ 7.807

  21. Find f and g so that F = gf. (See Example 3.)
  22. (a)
    F(x) = √(x + 7)
    (b)
    F(x) = (x2 + x)15
    💬 SOLUTION:
    (a)
    g(x) = √x, f(x) = x + 7
    (b)
    g(x) = x15, f(x) = x2 + x

  23. Find f and g so that p = fg.
  24. (a)
    p(x)
    =
    2
    (x2 + x + 1)3
    (b)
    p(x)
    =
    1
     
    x3 + 3x
     
    💬 SOLUTION:
    (a)
    f(x) = 2 / x3, g(x) = x2 + x + 1
    (b)
    f(x) = 1 / x, g(x) = x3 + 3x

  25. Write p(x) = 1 / (√(x2 + 1)) as a composite of three functions in two different ways.
  26. 💬 SOLUTION:
    p = fgh if f(x) = 1 / x, g(x) = √(x), h(x) = x2 + 1
    p = fgh if f(x) = 1 / √(x), g(x) = x + 1, h(x) = x2

  27. Write p(x) = 1 / (√(x2 + 1)) as a composite of four functions.
  28. 💬 SOLUTION:
    p = fgh l if f(x) = 1 / x, g(x) = √(x), h(x) = x + 1, l(x) = x2

    Semoga Bermanfaat 😁

  29. Sketch the graph of f(x) = √(x – 2) – 3 by first sketching g(x) = √(x) and then translating. (See Example 4.)
  30. 💬 SOLUTION:
    Translate the graph of g(x) = √(x) to the right 2 units and down 3 units.
    Calculus 9th Purcell Chapter 0 - 0.6
    Calculus 9th Purcell Chapter 0 - 0.6

  31. Sketch the graph of g(x) = |x + 3| – 4 by first sketching h(x) = |x| and then translating.
  32. 💬 SOLUTION:
    Translate the graph of h(x) = |x| to the left 3 units and down 4 units.
    Calculus 9th Purcell Chapter 0 - 0.6
    Calculus 9th Purcell Chapter 0 - 0.6

  33. Sketch the graph of f(x) = (x – 2)2 – 4 using translations.
  34. 💬 SOLUTION:
    Translate the graph of y = x2 to the right 2 units and down 4 units.
    Calculus 9th Purcell Chapter 0 - 0.6

  35. Sketch the graph of g(x) = (x + 1)3 – 3 using translations.
  36. 💬 SOLUTION:
    Translate the graph of y = x3 to the left 1 unit and down 3 units.
    Calculus 9th Purcell Chapter 0 - 0.6

  37. Sketch the graphs of f(x) = (x – 3) / 2 and g(x) = √(x) using the same coordinate axes. Then sketch f + g by adding y-coordinates.
  38. 💬 SOLUTION:
    (f + g)(x) = [(x – 3) / 2] + √(x)
    Calculus 9th Purcell Chapter 0 - 0.6

  39. Follow the directions of Problem 19 for f(x) = x and g(x) = |x|.
  40. 💬 SOLUTION:
    (f + g)(x) = x + |x|
    Calculus 9th Purcell Chapter 0 - 0.6

  41. Sketch the graph of F(t)
    =
    |t| – t
    .
    t
  42. 💬 SOLUTION:
    F(t)
    =
    |t| – t
    .
    t
    Calculus 9th Purcell Chapter 0 - 0.6

Semoga Bermanfaat 😁

Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - 0.6 Number 1 – 21. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆

Ahmad Qolfathiriyus Firdaus

We are bantalmateri.com that utilizes the internet and digital media in delivering material, questions and even the form of discussion. In the current generation, online learning methods (commonly called daring) are considered closer to students who are very integrated and difficult to separate from technology. The emergence of technology has also facilitated the implementation of schools even though students and educators alike have to adapt.

No comments:

Post a Comment