Kunci Jawaban dan Pembahasan Soal || Buku Calculus 9th Purcell Chapter 1 - 1.1 Number 29 – 58

Pembahasan Soal Buku Calculus 9th Purcell Chapter 1 Section 1.1

CHAPTER 1 LIMITS

SECTION 1.1 Introduction to Limits


Problem Set 1.1, Number 29 – 58.

Calculus 9th Purcell Chapter 1 - 1.1

  1. For the function f graphed in Figure 11, find the indicated limit or function value, or state that it does not exist.
  2. (a)
    lim
    f(x)
    x → –3
     
    (b)
    f(–3)
     
    (c)
    f(–1)
     
    (d)
    lim
    f(x)
    x → –1
     
    (e)
    f(1)
     
    (f)
    lim
    f(x)
    x → 1
     
    (g)
    lim
    f(x)
    x → 1
     
    (h)
    lim
    f(x)
    x → 1+
     
    (i)
    lim
    f(x)
    x → –1+
     
    PEMBAHASAN:
    lim
    x → –3
    f(x) = 2
     
     
     
    f(–3) = 1
     
    f(–1) does not exist.
     
    lim
    x → –1
    f(x) = 5/2
     
     
     
    f(1) = 2
     
    lim
    x → 1
    f(x) does not exist.
     
     
    lim
    x → 1
    f(x) = 2
     
     
     
    lim
    x → 1+
    f(x) = 1
     
     
     
    lim
    x → –1+
    f(x) = 5/2
     
     
     

  3. Follow the directions of Problem 29 for the function f graphed in Figure 12.
  4. PEMBAHASAN:
    (a)
    lim
    x → –3
    f(x) does not exist.
     
     
     
    (b)
    f(–3) = 1
     
     
    (c)
    f(–1) = 1
     
     
    (d)
    lim
    x → –1
    f(x) = 2
     
     
     
    (e)
    f(1) = 1
     
     
    (f)
    lim
    x → 1
    f(x) does not exist.
     
     
     
    (g)
    lim
    x → 1
    f(x) = 1
     
     
     
    (h)
    lim
    x → 1+
    f(x) does not exist.
     
     
    (i)
    lim
    x → –1+
    f(x) = 2
     
     
     

  5. For the function f graphed in Figure 13, find the indicated limit or function value, or state that it does not exist.
  6. (a)
    f(–3)
     
    (b)
    f(3)
     
    (c)
    lim
    f(x)
    x → –3
     
    (d)
    lim
    f(x)
    x → –3+
     
    (e)
    lim
    f(x)
    x → –3
     
    (f)
    lim
    f(x)
    x → 3+
     
    PEMBAHASAN:
    (a)
    f(–3) = 2
     
    (b)
    f(3) is undefined.
     
    (c)
    lim
    x → –3
    f(x) = 2
     
     
     
    (d)
    lim
    x → –3+
    f(x) = 4
     
     
     
    (e)
    lim
    x → –3
    f(x) does not exist.
     
     
    (f)
    lim
    x → 3+
    f(x) does not exist.
     
     

    Calculus 9th Purcell Chapter 1 - 1.1

  7. For the function f graphed in Figure 14, find the indicated limit or function value, or state that it does not exist.
  8. (a)
    lim
    f(x)
    x → –1
     
    (b)
    lim
    f(x)
    x → –1+
     
    (c)
    lim
    f(x)
    x → –1
     
    (d)
    f(–1)
     
    (e)
    lim
    f(x)
    x → 1
     
    (f)
    f(1)
     
    PEMBAHASAN:
    (a)
    lim
    x → –1
    f(x) = –2
     
    (b)
    lim
    x → –1+
    f(x) = –2
     
    (c)
    lim
    x → –1
    f(x) = –2
     
    (d)
    f(–1) = –2
     
    (e)
    lim
    x → 1
    f(x) = 0
     
    (f)
    f(1) = 0
     

  9. Sketch the graph of
  10. f(x)
    =
    {
    x
    if
    x < 0
    x
    if
    0 ≤ x < 1
    1 + x
    if
    x ≥ 1
    Then find each of the following or state that it does not exist.
    (a)
    lim
    f(x)
    x → 0
     
    (b)
    lim
    f(x)
    x → 1
     
    (c)
    f(1)
     
    (d)
    lim
    f(x)
    x → 1+
     
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.1

    (a)
    lim
    x → 0
    f(x) = 0
     
    (b)
    lim
    x → 1
    f(x) does not exist.
    (c)
    f(1) = 2
     
    (d)
    lim
    x → 1+
    f(x) = 2
     

  11. Sketch the graph of
  12. g(x)
    =
    {
    x + 1
    if
    x < 1
    x – 1
    if
    1 < x < 2
    5 – x2
    if
    x ≥ 2
    Then find each of the following or state that it does not exist.
    (a)
    lim
    g(x)
    x → 1
     
    (b)
    g(1)
     
    (c)
    lim
    g(x)
    x → 2
     
    (d)
    lim
    g(x)
    x → 2+
     
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.1

    (a)
    lim
    x → 1
    g(x) = 0
    (b)
    g(1) does not exist.
     
    (c)
    lim
    x → 2
    g(x) = 1
    (d)
    lim
    x → 2+
    g(x) = 1

    Semoga Bermanfaat 😁

  13. Sketch the graph of f(x) = x –〚x〛; then find each of the following or state that does not exist.
  14. (a)
    f(0)
     
    (b)
    lim
    f(x)
    x → 0
     
    (c)
    lim
    f(x)
    x → 0
     
    (d)
    lim
    f(x)
    x1/2
     
    PEMBAHASAN:
    f(x) = x –〚x

    Calculus 9th Purcell Chapter 1 - 1.1

    (a)
    f(0) = 0
     
    (b)
    lim
    x → 0
    f(x) does not exist.
    (c)
    lim
    x → 0
    f(x) = 1
     
    (d)
    lim
    x1/2
    f(x) = 1/2
     

  15. Follow the directions of Problem 35 for f(x) = x/|x|.
  16. PEMBAHASAN:
    f(x) = x/|x|

    Calculus 9th Purcell Chapter 1 - 1.1

    (a)
    f(0) does not exist.
     
    (b)
    lim
    x → 0
    f(x) does not exist.
    (c)
    lim
    x → 0
    f(x) = 1
     
    (d)
    lim
    x1/2
    f(x) = 1
     

  17. Find limx → 1 (x2 – 1)/|x – 1| or state that it does not exist.
  18. PEMBAHASAN:
     
    lim
    x → 1+
    x2 – 1
    does not exist.
    |x – 1|
     
     
    lim
    x → 1+
    x2 – 1
    = –2
     
    |x – 1|
     
     
    and
     
     
     
    lim
    x → 1+
    x2 – 1
    = 2
     
    |x – 1|
     

  19. Evaluate limx → 0 [√(x + 2) – √2]/x. Hint: Rationalize the numerator by multiplying the numerator and denominator by √(x + 2) + √2.
  20. PEMBAHASAN:
     
    lim
    x → 0
    √(x + 2) – √2
    =
     
    lim
    x → 0
    [√(x + 2) – √2][√(x + 2) + √2]
    x
    x [√(x + 2) + √2]
     
     
    =
     
    lim
    x → 0
    x + 2 – 2
     
     
    x [√(x + 2) + √2]
     
     
     
    =
     
    lim
    x → 0
    x
     
     
    x [√(x + 2) + √2]
     
     
     
    =
     
    lim
    x → 0
    1
     
     
    √(x + 2) + √2
     
     
     
    =
    1
     
     
    √(0 + 2) + √2
     
     
     
    =
    1
     
     
    2√2
     
     
     
    =
    √2
     
     
    4
     

  21. Let
  22. f(x)
    =
    {
    x
    if
    x is rational
    x
    if
    x is irrational
    Find each value, if possible.
    (a)
    lim
    f(x)
    x → 1
     
    (b)
    lim
    f(x)
    x → 0
     
    PEMBAHASAN:
    (a)
    lim
    x → 1
    f(x) does not exist.
    (b)
    lim
    x → 0
    f(x) = 0
     

    Semoga Bermanfaat 😁

  23. Sketch, as best you can, the graph of a function f that satisfies all the following conditions.
  24. (a)
    Its domain is the interval [0, 4].
     
    (b)
    f(0) = f(1) = f(2) = f(3) = f(4) = 1
    (c)
    lim
    f(x) = 2
     
    x → 1
     
     
    (d)
    lim
    f(x) = 1
     
    x → 2
     
     
    (e)
    lim
    f(x) = 2
     
    x → 3
     
     
    (f)
    lim
    f(x) = 1
     
    x → 3+
     
     
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.1


  25. Let
  26. f(x)
    =
    {
    x2
    if
    x is rational
    x4
    if
    x is irrational
    For what value of a does limxa f(x) exist?
    PEMBAHASAN:
    lim
    xa
    f(x) exists for a = –1, 0, 1.

  27. The function f(x) = x2 had been carefully graphed, but during the night a mysterious visitor changed the values of f at a million different places. Does this affect the value of limxa f(x) at any a? Explain.
  28. PEMBAHASAN:
    The changed values will not change limxa f(x) at any a. As x approaches a, the limit is still a2.

  29. Find each of the following limits or state that it does not exist.
  30. (a)
     
    lim
    x → 1
    |x – 1|
     
    x – 1
     
    (b)
     
    lim
    x → 1
    |x – 1|
     
    x – 1
     
    (c)
     
    lim
    x → 1
    x2 – |x – 1| – 1
     
    |x – 1|
     
    (d)
     
    lim
    x → 1
    [
    1
    1
    ]
    x – 1
    |x – 1|
    PEMBAHASAN:
    (a)
     
    lim
    x → 1
    |x – 1|
    does not exist.
     
    x – 1
     
     
     
    lim
    x → 1
    |x – 1|
    = –1 and
     
    x – 1
     
     
     
    lim
    x → 1+
    |x – 1|
    = 1
     
    x – 1
     
    (b)
     
    lim
    x → 1
    |x – 1|
    = –1
     
    x – 1
     
    (c)
     
    lim
    x → 1
    x2 – |x – 1| – 1
    = –3
     
    |x – 1|
     
    (d)
     
    lim
    x → 1
    [
    1
    1
    ]
    does not exist.
    x – 1
    |x – 1|

  31. Find each of the following limits or state that it does not exist.
  32. (a)
    lim
    √(xx)
    x → 1+
     
    (b)
    lim
    1/x
    x → 0+
     
    (c)
    lim
    x(–1)1/x
    x → 0+
     
    (d)
    lim
    x(–1)1/x
    x → 0+
     
    PEMBAHASAN:
    (a)
    Lim
    √(xx) = 0
    x → 1+
     
    (b)
    Lim
    1/xdoes not exist.
    x → 0+
     
    (c)
    lim
    x(–1)1/x= 0
    x → 0+
     
    (d)
    lim
    x(–1)1/x= 0
    x → 0+
     

  33. Find each of the following limits or state that it does not exist.
  34. (a)
    lim
    x1/x
    x → 0+
     
    (b)
    lim
    x21/x
    x → 0+
     
    (c)
    lim
    (x+ x)
    x → 3
     
    (d)
    lim
    (x+ x)
    x → 3+
     
    PEMBAHASAN:
    (a)
    lim
    x1/x= 1
    x → 0+
     
    (b)
    lim
    x21/x= 0
    x → 0+
     
    (c)
    lim
    (x+ x) = –1
    x → 3
     
    (d)
    lim
    (x+ x) = –1
    x → 3+
     

  35. Find each of the following limits or state that it does not exist.
  36. (a)
    lim
    x/ x
    x → 3
     
    (b)
    lim
    x/ x
    x → 0+
     
    (c)
    lim
    x
    x → 1.8
     
    (d)
    lim
    x/ x
    x → 1.8
     
    PEMBAHASAN:
    (a)
    lim
    x/ x : Does not exist.
    x → 3
     
    (b)
    lim
    x/ x = 0
    x → 0+
     
    (c)
    lim
    x= 1
    x → 1.8
     
    (d)
    lim
    x/ x = 0.556
    x → 1.8
     

    Many software packages have programs for calculating lim-ts, although you should be warned that they are not infallible. To develop confidence in your program, use it to recalculate some of he limits in Problems 1–28. Then for each of the following, find he limit or state that it does not exist.
  37. lim
    x
    x → 0
     
  38. PEMBAHASAN:
    limx → 0x does not exist since √x is not defined for x < 0.

  39. lim
    xx
    x → 0+
     
  40. PEMBAHASAN:
    lim
    xx
    = 1
    x → 0+
     

  41. lim
    √|x|
    x → 0
     
  42. PEMBAHASAN:
    lim
    √|x|
    = 0
    x → 0
     

  43. lim
    |x|x
    x → 0
     
  44. PEMBAHASAN:
    lim
    |x|x
    = 1
    x → 0
     

  45. lim
    (sin 2x) / 4x
    x → 0
     
  46. PEMBAHASAN:
    lim
    (sin 2x) / 4x
    = ½
    x → 0
     

  47. lim
    (sin 5x) / 3x
    x → 0
     
  48. PEMBAHASAN:
    lim
    (sin 5x) / 3x
    = 5/3
    x → 0
     

  49. lim
    cos (1 / x)
    x → 0
     
  50. PEMBAHASAN:
    lim
    cos (1 / x) : does not exist.
    x → 0
     

  51. lim
    x cos (1 / x)
    x → 0
     
  52. PEMBAHASAN:
    lim
    x cos (1 / x)
    = 0
    x → 0
     

  53.  
    lim
    x → 1
    x3 – 1
    √(2x + 2) – 2
  54. PEMBAHASAN:
     
    lim
    x → 1
    x3 – 1
    = 6
    √(2x + 2) – 2

  55.  
    lim
    x → 0
    x sin 2x
    sin (x2)
  56. PEMBAHASAN:
     
    lim
    x → 0
    x sin 2x
    = 2
    sin (x2)

  57.  
    lim
    x → 2
    x2x – 2
    |x – 2|
  58. PEMBAHASAN:
     
    lim
    x → 2
    x2x – 2
    = –3
    |x – 2|

  59.  
    lim
    x → 1+
    2
    1 + 21/(x – 1)
  60. PEMBAHASAN:
     
    lim
    x → 1+
    2
    = 0
    1 + 21/(x – 1)

  61. Since calculus software packages find limxa f(x) by sampling a few values of f(x) for x near a, they can be fooled. Find a function f for which limxa f(x) fails to exist but for which your sortware gives a valus for the limit.
  62. PEMBAHASAN:
    limx → 0x; The computer gives a value of 0, but limx → 0x does not exist.

Semoga Bermanfaat 😁

Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 1 - 1.1 Introduction to Limit - Number 29 – 58. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆

Ahmad Qolfathiriyus Firdaus

We are bantalmateri.com that utilizes the internet and digital media in delivering material, questions and even the form of discussion. In the current generation, online learning methods (commonly called daring) are considered closer to students who are very integrated and difficult to separate from technology. The emergence of technology has also facilitated the implementation of schools even though students and educators alike have to adapt.

No comments:

Post a Comment