CHAPTER 0 PRELIMINARIES
Review and Preview Problems
Review and Preview Problems, Number 1 – 16
- Solve the following inequalities:
- Solve the following inequalities:
- Solve |x – 7| = 3 for x.
- Solve |x + 3| = 2 for x.
- The distance along the number line between x and 7 is equal to 3. What are the possible values for x?
- The distance along the number line between x and 7 is equal to d. What are the possible values for x?
- Solve the following inequalities:
- Solve the following inequalities:
- What are the natural domains of the following functions?
- What are the natural domains of the following functions?
- Evaluate the functions f(x) and g(x) from Problem 9 at the following values of x: 0, 0.9, 0.99, 0.999, 1.001, 1.01, 1.1, 2.
- Evaluate the functions F(x) and G(x) from Problem 10 at the following values of x: –1, –0.1, –0.01, –0.001, 0.001, 0.01, 0.1, 1.
- The distance between x and 5 is less than 0.1. What are the possible values for x?
- The distance between x and 5 is less than ε, where ε is a positive number. What are the possible values for x?
- True or false. Assume that a, x, and y are real numbers and n is a natural number.
- Use the Addition Identity for the sine function to find sin(c + h) in terms of sin c, sin h, cos c, and cos h.
(a)
|
1
< 2x + 1 < 5
|
(b)
|
–3
< x/2 < 8
|
|
|
❤
|
PEMBAHASAN:
|
(a)
|
0
< 2x < 4; 0 < x < 2
|
(b)
|
–6
< x < 16
|
(a)
|
14
< 2x + 1 < 15
|
(b)
|
–3
< 1 – x/2 < 8
|
|
|
❤
|
PEMBAHASAN:
|
(a)
|
13
< 2x < 14; 6.5 < x < 7
|
(b)
|
–4
< –x/2 < 7; –14 < x < 8
|
|
|
❤
|
PEMBAHASAN:
|
x – 7 = 3
|
or
|
x – 7 = –3
|
x = 10
|
or
|
x = 4
|
|
|
❤
|
PEMBAHASAN:
|
x + 3 = 2
|
or
|
x + 3 = –2
|
x = –1
|
or
|
x = –5
|
|
|
❤
|
PEMBAHASAN:
|
x – 7 = 3
|
or
|
x – 7 = –3
|
x = 10
|
or
|
x = 4
|
|
|
❤
|
PEMBAHASAN:
|
x – 7 = d
|
or
|
x – 7 = –d
|
x = 7 + d
|
or
|
x = 7 – d
|
(a)
|
|x
– 7| < 3
|
(b)
|
|x
– 7| ≤ 3
|
(c)
|
|x
– 7| ≤ 1
|
(d)
|
|x
– 7| < 0.1
|
|
|
❤
|
PEMBAHASAN:
|
(a)
|
x – 7 < 3
|
and
|
x – 7 > –3
|
|
x < 10
|
and
|
x > 4
|
|
4 < x
< 10
|
||
(b)
|
x – 7 ≤ 3
|
and
|
x – 7 ≥ –3
|
|
x ≤ 10
|
and
|
x ≥ 4
|
|
4 ≤ x ≤ 10
|
||
(c)
|
x – 7 ≤ 1
|
and
|
x – 7 ≥ –1
|
|
x ≤ 8
|
and
|
x ≥ 6
|
|
6 ≤ x ≤ 8
|
||
(d)
|
x – 7 < 0.1
|
and
|
x – 7 > –0.1
|
|
x < 7.1
|
and
|
x > 6.9
|
|
6.9 < x
< 7.1
|
(a)
|
|x
– 2| < 1
|
(b)
|
|x
– 2| ≥ 1
|
(c)
|
|x
– 2| < 0.1
|
(d)
|
|x
– 2| < 0.01
|
|
|
❤
|
PEMBAHASAN:
|
(a)
|
x – 2 < 1
|
and
|
x – 2 > –1
|
|
x < 3
|
and
|
x > 1
|
|
1 < x
< 3
|
||
(b)
|
x – 2 ≥ 1
|
or
|
x – 2 ≤ –1
|
|
x ≥ 3
|
or
|
x ≤ 1
|
(c)
|
x – 2 < 0.1
|
and
|
x – 7 > –0.1
|
|
x < 2.1
|
and
|
x > 1.9
|
|
1.9 < x < 2.1
|
||
(d)
|
x – 2 < 0.01
|
and
|
x – 2 > –0.01
|
|
x < 2.01
|
and
|
x > 1.99
|
|
1.99 < x
< 2.01
|
BACA JUGA:
|
|
(a)
|
f(x)
|
=
|
x2
– 1
|
||
x – 1
|
|||||
(b)
|
g(x)
|
=
|
x2
– 2x + 1
|
||
2x2 – x – 1
|
|
|
❤
|
PEMBAHASAN:
|
(a)
|
x
– 1 ≠ 0; x ≠ 1
|
(b)
|
2x2
– x – 1 ≠ 0; x ≠ 1, –0.5
|
(a)
|
F(x)
|
=
|
|x|
|
||
x
|
|||||
(b)
|
G(x)
|
=
|
sin x
|
||
x
|
|
|
❤
|
PEMBAHASAN:
|
(a)
|
x
≠ 0
|
(b)
|
x
≠ 0
|
|
|
❤
|
PEMBAHASAN:
|
(a)
|
f(0)
|
=
|
0 – 1
|
=
1
|
0 – 1
|
|
f(0.9)
|
=
|
0.81 – 1
|
=
1.9
|
0.9 – 1
|
|
f(0.99)
|
=
|
0.9801 – 1
|
=
1.99
|
0.99 – 1
|
|
f(0.999)
|
=
|
0.998001 – 1
|
=
1.999
|
0.999 – 1
|
|
f(1.001)
|
=
|
1.002001 – 1
|
=
2.001
|
1.001 – 1
|
|
f(1.01)
|
=
|
1.0201 – 1
|
=
2.01
|
1.01 – 1
|
|
f(1.1)
|
=
|
1.21 – 1
|
=
2.1
|
1.1 – 1
|
|
f(2)
|
=
|
4 – 1
|
=
3
|
2 – 1
|
(b)
|
g(0)
|
=
|
–1
|
|
|
g(0.9)
|
=
|
–0.0357143
|
|
|
g(0.99)
|
=
|
–0.0033557
|
|
|
g(0.999)
|
=
|
–0.000333556
|
|
|
g(1.001)
|
=
|
0.000333111
|
|
|
g(1.01)
|
=
|
0.00331126
|
|
|
g(1.1)
|
=
|
0.03125
|
|
|
g(2)
|
=
|
1
|
|
|
5
|
|
|
❤
|
PEMBAHASAN:
|
(a)
|
F(–1)
|
=
|
1
|
= –1
|
|
–1
|
|
F(–0.1)
|
=
|
0.1
|
= –1
|
|
–0.1
|
|
F(–0.01)
|
=
|
0.01
|
= –1
|
|
–0.01
|
|
F(–0.001)
|
=
|
0.001
|
= –1
|
|
–0.001
|
|
F(0.001)
|
=
|
0.001
|
= –1
|
|
0.001
|
|
F(0.01)
|
=
|
0.01
|
= –1
|
|
0.01
|
|
F(0.1)
|
=
|
0.1
|
= –1
|
|
0.1
|
|
F(1)
|
=
|
1
|
= –1
|
|
1
|
(b)
|
G(–1)
|
=
|
0.841471
|
|
G(–0.1)
|
=
|
0.998334
|
|
G(–0.01)
|
=
|
0.999983
|
|
G(–0.001)
|
=
|
0.99999983
|
|
G(0.001)
|
=
|
0.99999983
|
|
G(0.01)
|
=
|
0.999983
|
|
G(0.1)
|
=
|
0.998334
|
|
G(1)
|
=
|
0.841471
|
|
|
❤
|
PEMBAHASAN:
|
x – 5 < 0.1
|
and
|
x – 5 > –0.1
|
x < 5.1
|
and
|
x > 4.9
|
4.9 < x
< 5.1
|
|
|
❤
|
PEMBAHASAN:
|
x – 5 < ε
|
and
|
x – 5 > –ε
|
x < 5 + ε
|
and
|
x > 5 – ε
|
5 – ε < x
< 5 + ε
|
(a)
|
For
every x > 0, there exists a y such that y > x.
|
(b)
|
For
every a ≥ 0, there exists an n such that 1/n
< a.
|
(c)
|
For
every a > 0, there exists an n such that 1/n
< a.
|
(d)
|
For
every circle C in the plane, there exists an n such that the circle
C and its interior are all within n units of the origin.
|
|
|
❤
|
PEMBAHASAN:
|
(a)
|
True.
|
(b)
|
Flase:
Choose a = 0.
|
(c)
|
True.
|
(d)
|
True.
|
|
|
❤
|
PEMBAHASAN:
|
sin (c + h) = sin c cos h + cos c sin h
BACA JUGA:
|
|
Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - Review and Preview Problems - Number 1 – 16. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment