CHAPTER 0 PRELIMINARIES
Sample Test Problems
Sample Test Problems, Number 1 – 29
- Calculate each value for n = 1, 2, and –2.
- Simplify.
- Show that the average of two rational numbers is a rational number.
- Write the repeating decimal 4.1282828… as a ratio of two integers.
- Find an irrational number between 1/2 and 13/25.
- Calculate
- Calculate
- Calculate
- 1 – 3x > 0
- 6x + 3 > 2x – 5
- 3 – 2x ≤ 4x + 1 ≤ 2x + 7
- 2x2 + 5x – 3 < 0
- 21t2 – 44t + 12 ≤ –3
- 2x – 1>0x – 2
- (x + 4)(2x – 1)2(x – 3) ≤ 0
- |3x – 4| < 6
- 3≤21 – x
- |12 – 3x| ≥ |x|
- Find a value of x for which |–x| ≠ x.
- For what values of x does the equation |–x| = x hold?
- For what values of t does the equation |t – 5| = 5 – t hold?
- For what values of a and t does the equation |t – a| = a – t hold?
- Suppose |x| ≤ 2. Use properties of absolute values to show that
- White a sentence involving the word distance to express the following algebraic sentences:
- Sketch the triangle with vertices A(–2, 6), B(1, 2), and C(5, 5), and show that it is a right triangle.
- Find the distance from (3, –6) to the midpoint of the line segment for (1, 2) to (7, 8).
- Find the equation of circle with diameter AB if A = (2, 0) and B = (10, 4).
- Find the center and radius of the circle with equation x2 + y2 – 8x + 6y = 0.
- Find the distance between the centers of the circles with equations
(a)
|
(n + (1/n))n
|
(b)
|
(n2 – n + 1)2
|
(c)
|
43/n
|
(d)
|
(|1/n|)(1/n)
|
💬 SOLUTION:
(a)
|
(n + (1/n))n
|
|
(1 + (1/1))1 = 2;
|
|
(2 + (1/2))2 = 25/4;
|
|
(–2 + (1/–2))–2 = 4/25
|
(b)
|
(n2 – n + 1)2
|
|
[(1)2 – 1 + 1]2 = 1;
|
|
[(2)2 – (2) + 1]2 =
9;
|
|
[(–2)2 – (–2) + 1]2 =
49
|
(c)
|
43/n
|
|
43/1 = 64;
|
|
43/2 = 8;
|
|
4–3/2 = 1/8
|
(d)
|
(|1/n|)(1/n)
|
|
(|1/1|)(1/1) = 1;
|
|
(|1/2|)(1/2) = (2)(1/2)/2;
|
|
(|1/–2|)(–1/2) = (2)(1/2)
|
(a)
|
(1
+
|
1
|
+
|
1
|
)
(1 –
|
1
|
+
|
1
|
)
–1
|
||||
m
|
n
|
m
|
n
|
||||||||||
(b)
|
2
|
–
|
x
|
||||||||||
x
+
1
|
x2 – x – 2
|
||||||||||||
3
|
–
|
2
|
|||||||||||
x
+
1
|
x – 2
|
||||||||||||
(c)
|
(t3
– 1)
|
||||||||||||
|
(t
– 1)
|
💬 SOLUTION:
(a)
|
(1 +
|
1
|
+
|
1
|
) (1 –
|
1
|
+
|
1
|
) –1
|
||||||||||||||||
m
|
n
|
m
|
n
|
||||||||||||||||||||||
|
=
|
1 +
|
1
|
+
|
1
|
||||||||||||||||||||
m
|
n
|
||||||||||||||||||||||||
|
1 –
|
1
|
+
|
1
|
|||||||||||||||||||||
m
|
n
|
||||||||||||||||||||||||
|
=
|
mn + n +
m
|
|||||||||||||||||||||||
|
mn + n +
m
|
||||||||||||||||||||||||
(b)
|
2
|
–
|
x
|
||||||||||||||||||||||
x + 1
|
x2 – x – 2
|
||||||||||||||||||||||||
3
|
–
|
2
|
|||||||||||||||||||||||
x + 1
|
x – 2
|
||||||||||||||||||||||||
|
=
|
2
|
–
|
x
|
|||||||||||||||||||||
x + 1
|
(x – 2)(x + 1)
|
||||||||||||||||||||||||
3
|
–
|
2
|
|||||||||||||||||||||||
x + 1
|
x – 2
|
||||||||||||||||||||||||
|
=
|
2(x – 2) – x
|
|||||||||||||||||||||||
|
3(x – 2) – 2(x + 1)
|
||||||||||||||||||||||||
|
=
|
x – 4
|
|||||||||||||||||||||||
|
x – 8
|
||||||||||||||||||||||||
(c)
|
(t3 – 1)
|
=
|
(t – 1)(t2 + t
+ 1)
|
=
|
t2 + t + 1
|
||||||||||||||||||||
|
(t – 1)
|
(t – 1)
|
💬 SOLUTION:
Let a, b, c, and d be integers.
|
(a/b) + (c/d)
|
=
|
a
|
+
|
c
|
=
|
ad + bc
|
Which is rational.
|
2
|
2b
|
2d
|
2bd
|
💬 SOLUTION:
|
x
|
=
|
4.1282828…
|
|
|
1000x
|
=
|
4128.2828…
|
|
|
10x
|
=
|
41.282828…
|
|
|
990x
|
=
|
4087
|
|
|
x
|
=
|
4087
|
|
|
990
|
💬 SOLUTION:
Answers will vary. Possible answer:
√
|
13
|
≈
|
0.50990…
|
50
|
|
(∛(8.15 × 104) – 1.32)2
|
3.24
|
💬 SOLUTION:
|
(∛(8.15 × 104) – 1.32)2
|
≈
|
545.39
|
3.24
|
[π – (2.0)1/2]2.5 – ∛2.0
💬 SOLUTION:
[π – (2.0)1/2]2.5 – ∛2.0 ≈ 2.66
BACA JUGA:
|
|
sin2 (2.45) + cos2 (2.40) – 1.00
💬 SOLUTION:
sin2 (2.45) + cos2 (2.40) – 1.00 ≈ –0.0495
In Problems 9–18, find the solution set, graph this set on the real line, and express this set in interval notation.
💬 SOLUTION:
💬 SOLUTION:
💬 SOLUTION:
3 – 2x
|
≤
|
4x + 1
|
≤
|
2x + 7
|
|
|
3 – 2x
|
≤
|
4x + 1
|
and
|
4x + 1
|
≤
|
2x + 7
|
6x
|
≥
|
2
|
and
|
2x
|
≥
|
6
|
x
|
≥
|
1
|
and
|
x
|
≤
|
3;
|
3
|
[1/3, 3]
|
💬 SOLUTION:
💬 SOLUTION:
21t2 – 44t + 12
|
≤
|
–3
|
21t2 – 44t + 15
|
≤
|
0
|
t
|
=
|
44 ± √[442 – 4(21)(15)]
|
|||
2(21)
|
|||||
t
|
=
|
44 ± 26
|
|||
42
|
|||||
t
|
=
|
3
|
,
|
5
|
|
7
|
3
|
(t – 3/7)(t
– 5/3)
|
≤
|
0
|
[3/7
, 5/3]
|
💬 SOLUTION:
BACA JUGA:
|
|
💬 SOLUTION:
💬 SOLUTION:
💬 SOLUTION:
💬 SOLUTION:
|
|12 – 3x|
|
≥
|
|x|
|
|
(12 – 3x)2
|
≥
|
x2
|
|
144 – 72x + 9x2
|
≥
|
x2
|
|
8x2 – 72x + 144
|
≥
|
0
|
|
8(x – 3)(x – 6)
|
≥
|
0
|
(–∞, 3] ∪ [6, ∞)
|
💬 SOLUTION:
For example, if x = –2, |–(–2)| = 2 ≠ –2
|–x| ≠ x for any x < 0.
💬 SOLUTION:
If |–x| = x, then |x| = x.
x ≥ 0.
💬 SOLUTION:
|t – 5| = |–(5 – t)| = |5 – t|.
If |5 – t| = 5 – t, then 5 – t ≥ 0.
t ≤ 5.
BACA JUGA:
|
|
💬 SOLUTION:
|t – a| = |–(a – t)| = |a – t|.
If |a – t| = a – t, then a – t ≥ 0.
t ≤ a.
|
|
|
2x2 + 3x + 2
|
|
≤ 8
|
|
x2 + 2
|
💬 SOLUTION:
If |x| ≤ 2, then
|
0 ≤ |2x2 + 3x + 2| ≤ |2x2|
+ |3x| + 2 ≤ 8 + 6 + 2 = 16
|
also |x2 + 2| ≥ 2 so
|
|
1
|
≤
|
1
|
. Thus
|
|
|x2 + 2|
|
2
|
|
|
|
2x2 + 3x + 2
|
|
=
|
|2x2 + 3x + 2|
|
|
|
1
|
|
≤
|
16 (1/2) = 8
|
|
x2 + 2
|
x2 + 2
|
(a)
|
|x – 5| = 3
|
(b)
|
|x
+ 1| ≤ 2
|
(c)
|
|x – a| > b
|
💬 SOLUTION:
(a)
|
The istance between x and 5 is 3.
|
(b)
|
The distance between x and –1 is less than or
equal to 2.
|
(c)
|
The distance
between x and a is greater than b.
|
💬 SOLUTION:
d(A,
B)
|
=
|
√[(1 + 2)2 + (2 – 6)2]
|
|
|
=
|
√[9 + 16] = 5
|
|
d(B,
C)
|
=
|
√[(5 – 1)2 + (5 – 2)2]
|
|
|
|
√[16 + 9] = 5
|
|
d(A,
C)
|
=
|
√[(5 + 2)2 + (5 – 6)2]
|
|
|
|
√[49 + 1] = √50 = 5√2
|
|
(AB)2 + (BC)2
= (AC)2, so ΔABC is a right triangle.
|
💬 SOLUTION:
Midpoint: (
|
1 + 7
|
,
|
2 + 8
|
) = (4, 5)
|
2
|
2
|
d = √[(4
– 3)2 + (5 + 6)2] = √[1 + 121] = √122
|
💬 SOLUTION:
center
|
=
|
(
|
2 + 10
|
,
|
0 + 4
|
) = (6, 2)
|
2
|
2
|
center
|
=
|
1
|
√[(10 – 2)2 + (4 – 0)2]
|
2
|
|
=
|
1
|
√[64 + 16]
|
2
|
|
=
|
2√5
|
|
circle
|
:
|
(x – 6)2 + (y – 2)2
= 20
|
|
💬 SOLUTION:
x2 + y2 – 8x + 6y = 0
|
x2 – 8x + 16 + y2 + 6y +
9 = 16 + 9
|
(x – 4)2 + (y + 3)2
= 25;
|
center = (4, –3), radius = 5
|
x2 – 2x + y2 + 2y = 2
and
x2 + 6x + y2 – 4y = –7
💬 SOLUTION:
x2 – 2x + y2 + 2y
|
=
|
2
|
x2 – 2x + 1 + y2 + 2y + 1
|
=
|
2 + 1 + 1
|
(x – 1)2 + (y + 1)2
|
=
|
4;
|
center = (1, –1)
|
|
|
x2 + 6x + y2 – 4y
|
=
|
–7
|
x2 + 6x + 9 + y2 – 4y + 4
|
=
|
–7 + 9 + 4
|
(x + 3)2 + (y – 2)2
|
=
|
6
|
center = (–3, 2)
|
|
|
d = √[(–3
– 1)2 + (2 + 1)2]
|
=
|
√(16 + 4) = 5
|
BACA JUGA:
|
|
Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - Sample Test Problems - Number 1 – 29. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment