Kunci Jawaban dan Pembahasan Soal || Buku Calculus 9th Purcell Chapter 0 - Sample Test Problems - Number 1 – 29

Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 Section 0.8

CHAPTER 0 PRELIMINARIES

Sample Test Problems


Calculus 9th Purcell Chapter 0 - 0.9

Sample Test Problems, Number 1 – 29
  1. Calculate each value for n = 1, 2, and –2.
  2. (a)
    (n + (1/n))n
    (b)
    (n2n + 1)2
    (c)
    43/n
    (d)
    (|1/n|)(1/n)
    💬 SOLUTION:
    (a)
    (n + (1/n))n
     
    (1 + (1/1))1 = 2;
     
    (2 + (1/2))2 = 25/4;
     
    (–2 + (1/–2))–2 = 4/25
    (b)
    (n2n + 1)2
     
    [(1)2 – 1 + 1]2 = 1;
     
    [(2)2 – (2) + 1]2 = 9;
     
    [(–2)2 – (–2) + 1]2 = 49
    (c)
    43/n
     
    43/1 = 64;
     
    43/2 = 8;
     
    4–3/2 = 1/8
    (d)
    (|1/n|)(1/n)
     
    (|1/1|)(1/1) = 1;
     
    (|1/2|)(1/2) = (2)(1/2)/2;
     
    (|1/–2|)(–1/2) = (2)(1/2)

  3. Simplify.
  4. (a)
    (1 +
    1
    +
    1
    ) (1 –
    1
    +
    1
    ) –1
    m
    n
    m
    n
    (b)
    2
    x
     
    x + 1
    x2x – 2
     
    3
    2
     
    x + 1
    x – 2
     
    (c)
    (t3 – 1)
     
     
    (t – 1)
     
    💬 SOLUTION:
    (a)
    (1 +
    1
    +
    1
    ) (1 –
    1
    +
    1
    ) –1
     
    m
    n
    m
    n
     
     
    =
    1 +
    1
    +
    1
     
    m
    n
     
     
    1 –
    1
    +
    1
     
    m
    n
     
     
    =
    mn + n + m
     
     
    mn + n + m
     
    (b)
    2
    x
     
    x + 1
    x2x – 2
     
    3
    2
     
    x + 1
    x – 2
     
     
    =
    2
    x
     
    x + 1
    (x – 2)(x + 1)
     
    3
    2
     
    x + 1
    x – 2
     
     
    =
    2(x – 2) – x
     
     
    3(x – 2) – 2(x + 1)
     
     
    =
    x – 4
     
     
    x – 8
     
    (c)
    (t3 – 1)
    =
    (t – 1)(t2 + t + 1)
    =
    t2 + t + 1
     
    (t – 1)
    (t – 1)

  5. Show that the average of two rational numbers is a rational number.
  6. 💬 SOLUTION:
    Let a, b, c, and d be integers.
     
    (a/b) + (c/d)
    =
    a
    +
    c
    =
    ad + bc
    Which is rational.
    2
    2b
    2d
    2bd

  7. Write the repeating decimal 4.1282828… as a ratio of two integers.
  8. 💬 SOLUTION:
     
    x
    =
    4.1282828…
     
    1000x
    =
    4128.2828…
     
    10x
    =
    41.282828…
     
    990x
    =
    4087
     
    x
    =
    4087
     
     
    990
     

  9. Find an irrational number between 1/2 and 13/25.
  10. 💬 SOLUTION:
    Answers will vary. Possible answer:
    13
    0.50990…
    50

  11. Calculate
  12.  
    (∛(8.15 × 104) – 1.32)2
    3.24
    💬 SOLUTION:
     
    (∛(8.15 × 104) – 1.32)2
    545.39
    3.24

  13. Calculate
  14. [π – (2.0)1/2]2.5 – ∛2.0
    💬 SOLUTION:
    [π – (2.0)1/2]2.5 – ∛2.0 ≈ 2.66

    Semoga Bermanfaat 😁

  15. Calculate
  16. sin2 (2.45) + cos2 (2.40) – 1.00
    💬 SOLUTION:
    sin2 (2.45) + cos2 (2.40) – 1.00 ≈ –0.0495

    In Problems 9–18, find the solution set, graph this set on the real line, and express this set in interval notation.
  17. 1 – 3x > 0
  18. 💬 SOLUTION:
    1 – 3x
    > 
    0
    3x
    < 
    1
    x
    < 
    1
    3
    (–∞, 1/3)

    Calculus 9th Purcell Chapter 0 - 0.8


  19. 6x + 3 > 2x – 5
  20. 💬 SOLUTION:
    6x + 3
    > 
    2x – 5
    4x
    < 
    –8
    x
    < 
    –2
    (–2, ∞)

    Calculus 9th Purcell Chapter 0 - 0.8


  21. 3 – 2x ≤ 4x + 1 ≤ 2x + 7
  22. 💬 SOLUTION:
    3 – 2x
    4x + 1
    2x + 7
     
     
    3 – 2x
    4x + 1
    and
    4x + 1
    2x + 7
    6x
    2
    and
    2x
    6
    x
    1
    and
    x
    3;
    3
    [1/3, 3]

    Calculus 9th Purcell Chapter 0 - 0.8


  23. 2x2 + 5x – 3 < 0
  24. 💬 SOLUTION:
    2x2 + 5x – 3
    < 
    0
    (2x – 1)(x + 3)
    < 
    0
    –3 < x < ½
    ;
    (–3, 1/2)

    Calculus 9th Purcell Chapter 0 - 0.8


  25. 21t2 – 44t + 12 ≤ –3
  26. 💬 SOLUTION:
    21t2 – 44t + 12
    –3
    21t2 – 44t + 15
    0
    t
    =
    44 ± √[442 – 4(21)(15)]
    2(21)
    t
    =
    44 ± 26
     
    42
     
    t
    =
    3
    ,
    5
     
    7
    3
     
    (t3/7)(t5/3)
    0
    [3/7 , 5/3]

    Calculus 9th Purcell Chapter 0 - 0.9


  27.  
    2x – 1
    > 
    0
     
    x – 2
  28. 💬 SOLUTION:
     
    2x – 1
    > 
    0;
     
    x – 2
     
    (–∞, 1/2) (2, ∞)

    Calculus 9th Purcell Chapter 0 - 0.9


    Semoga Bermanfaat 😁

  29. (x + 4)(2x – 1)2(x – 3) ≤ 0
  30. 💬 SOLUTION:
    (x + 4)(2x – 1)2(x – 3) ≤ 0; [–4, 3]

    Calculus 9th Purcell Chapter 0 - 0.9


  31. |3x – 4| < 6
  32. 💬 SOLUTION:
    |3x – 4|
    < 
    6
    –6
    < 
    3x – 4
    < 
    6
    –2
    < 
    3x
    < 
    10;
    2
    < 
    x
    < 
    10
    ;
    3
    3
    (–
    2
    ,
    10
    )
    3
    3

    Calculus 9th Purcell Chapter 0 - 0.9


  33.  
    3
    2
     
    1 – x
  34. 💬 SOLUTION:
     
    3
    2
     
    1 – x
     
    3
    – 2
    0
     
    1 – x
     
    3 – 2(1 – x)
    0
     
    1 – x
     
    2x + 1
    0;
     
    1 – x
    (–∞, –1/2] (1, ∞)

    Calculus 9th Purcell Chapter 0 - 0.9


  35. |12 – 3x| ≥ |x|
  36. 💬 SOLUTION:
     
    |12 – 3x|
    |x|
     
    (12 – 3x)2
    x2
     
    144 – 72x + 9x2
    x2
     
    8x2 – 72x + 144
    0
     
    8(x – 3)(x – 6)
    0
    (–∞, 3] [6, ∞)

    Calculus 9th Purcell Chapter 0 - 0.9


  37. Find a value of x for which |–x| ≠ x.
  38. 💬 SOLUTION:
    For example, if x = –2, |–(–2)| = 2 ≠ –2
    |–x| ≠ x for any x < 0.

  39. For what values of x does the equation |–x| = x hold?
  40. 💬 SOLUTION:
    If |–x| = x, then |x| = x.
    x ≥ 0.

  41. For what values of t does the equation |t – 5| = 5 – t hold?
  42. 💬 SOLUTION:
    |t – 5| = |–(5 – t)| = |5 – t|.
    If |5 – t| = 5 – t, then 5 – t ≥ 0.
    t ≤ 5.

    Semoga Bermanfaat 😁

  43. For what values of a and t does the equation |ta| = at hold?
  44. 💬 SOLUTION:
    |ta| = |–(at)| = |at|.
    If |at| = at, then at ≥ 0.
    ta.

  45. Suppose |x| ≤ 2. Use properties of absolute values to show that
  46.  
     
     
    2x2 + 3x + 2
     
    ≤ 8
     
    x2 + 2
    💬 SOLUTION:
    If |x| ≤ 2, then
    0 ≤ |2x2 + 3x + 2| ≤ |2x2| + |3x| + 2 ≤ 8 + 6 + 2 = 16
    also |x2 + 2| ≥ 2 so
     
    1
    1
    . Thus
     
    |x2 + 2|
    2
     
     
     
    2x2 + 3x + 2
     
    =
    |2x2 + 3x + 2|
     
     
    1
     
    16 (1/2) = 8
     
    x2 + 2
    x2 + 2

  47. White a sentence involving the word distance to express the following algebraic sentences:
  48. (a)
    |x – 5| = 3
    (b)
    |x + 1| ≤ 2
    (c)
    |xa| > b
    💬 SOLUTION:
    (a)
    The istance between x and 5 is 3.
    (b)
    The distance between x and –1 is less than or equal to 2.
    (c)
    The distance between x and a is greater than b.

  49. Sketch the triangle with vertices A(–2, 6), B(1, 2), and C(5, 5), and show that it is a right triangle.
  50. 💬 SOLUTION:

    Calculus 9th Purcell Chapter 0 - 0.9

    d(A, B)
    =
    √[(1 + 2)2 + (2 – 6)2]
     
     
    =
    √[9 + 16] = 5
     
    d(B, C)
    =
    √[(5 – 1)2 + (5 – 2)2]
     
     
     
    √[16 + 9] = 5
     
    d(A, C)
    =
    √[(5 + 2)2 + (5 – 6)2]
     
     
     
    √[49 + 1] = √50 = 5√2
     
    (AB)2 + (BC)2 = (AC)2, so ΔABC is a right triangle.

  51. Find the distance from (3, –6) to the midpoint of the line segment for (1, 2) to (7, 8).
  52. 💬 SOLUTION:
    Midpoint: (
    1 + 7
    ,
    2 + 8
    ) = (4, 5)
    2
    2
    d = √[(4 – 3)2 + (5 + 6)2] = √[1 + 121] = √122

  53. Find the equation of circle with diameter AB if A = (2, 0) and B = (10, 4).
  54. 💬 SOLUTION:
    center
    =
    (
    2 + 10
    ,
    0 + 4
    ) = (6, 2)
    2
    2
    center
    =
    1
    √[(10 – 2)2 + (4 – 0)2]
    2
     
    =
    1
    √[64 + 16]
    2
     
    =
    2√5
    circle
    :
    (x – 6)2 + (y – 2)2 = 20

  55. Find the center and radius of the circle with equation x2 + y2 – 8x + 6y = 0.
  56. 💬 SOLUTION:
    x2 + y2 – 8x + 6y = 0
    x2 – 8x + 16 + y2 + 6y + 9 = 16 + 9
    (x – 4)2 + (y + 3)2 = 25;
    center = (4, –3), radius = 5

  57. Find the distance between the centers of the circles with equations
  58. x2 – 2x + y2 + 2y = 2
    and
    x2 + 6x + y2 – 4y = –7
    💬 SOLUTION:
    x2 – 2x + y2 + 2y
    =
    2
    x2 – 2x + 1 + y2 + 2y + 1
    =
    2 + 1 + 1
    (x – 1)2 + (y + 1)2
    =
    4;
    center = (1, –1)
     
     
    x2 + 6x + y2 – 4y
    =
    –7
    x2 + 6x + 9 + y2 – 4y + 4
    =
    –7 + 9 + 4
    (x + 3)2 + (y – 2)2
    =
    6
    center = (–3, 2)
     
     
    d = √[(–3 – 1)2 + (2 + 1)2]
    =
    √(16 + 4) = 5

Semoga Bermanfaat 😁

Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - Sample Test Problems - Number 1 – 29. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆

Ahmad Qolfathiriyus Firdaus

We are bantalmateri.com that utilizes the internet and digital media in delivering material, questions and even the form of discussion. In the current generation, online learning methods (commonly called daring) are considered closer to students who are very integrated and difficult to separate from technology. The emergence of technology has also facilitated the implementation of schools even though students and educators alike have to adapt.

No comments:

Post a Comment