Kunci Jawaban dan Pembahasan Soal || Buku Calculus 9th Purcell Chapter 0 - Sample Test Problems - Number 30 – 55

Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 Section 0.8

CHAPTER 0 PRELIMINARIES

Sample Test Problems


Calculus 9th Purcell Chapter 0 - 0.9

Sample Test Problems, Number 30 – 55
  1. Find the equation of the line through the indicated point that is parallel to the indicated line, and sketch both lines.
  2. (a)
    (3, 2): 3x + 2y = 6
    (b)
    (1, 1): y = 2/3 · x + 1
    (c)
    (5, 9): y = 10
    (d)
    (–3, 4): x = –2
    💬 SOLUTION:
    (a)
    3x + 2y
    =
    6
     
    2y
    =
    –3x + 6
     
    y
    =
    3/2 · x + 3
     
    m
    =
    3/2
     
    y – 2
    =
    3/2 · (x 3)
     
    y
    =
    3/2 · x + (13/2)

    Calculus 9th Purcell Chapter 0 - 0.9

    (b)
    m
    =
    2/3
     
    y + 1
    =
    2/3 · (x 1)
     
    y
    =
    2/3 · x (5/3)

    Calculus 9th Purcell Chapter 0 - 0.9

    (c)
    y
    =
    9

    Calculus 9th Purcell Chapter 0 - 0.9

    (d)
    x
    =
    –3

    Calculus 9th Purcell Chapter 0 - 0.9


  3. Write the equation of the line through (–2, 1) that
  4. (a)
    goes through (7, 3);
    (b)
    is parallel to 3x – 2y = 5;
    (c)
    is perpendicular to 3x + 4y = 9;
    (d)
    is perpendicular to y = 4;
    (e)
    has y-intercept 3.
    💬 SOLUTION:
    (a)
    m
    =
    3 – 1
    =
    2
    ;
     
     
    7 + 2
    9
     
    y – 1
    =
    2
    (x + 2)
     
     
     
    9
     
     
     
    y
    =
    2
    x +
    13
     
     
    9
    9
     
    (b)
    3x – 2y
    =
    5
     
     
    –2y
    =
    –3x + 5
     
     
    y
    =
    3
    x
    5
    ;
     
     
    2
    2
     
     
    m
    =
    3
     
     
    2
     
     
    y – 1
    =
    3
    (x + 2)
     
     
    2
     
     
    y
    =
    3
    x + 4
     
     
    2
     
    (c)
    3x + 4y
    =
    9
     
     
    4y
    =
    –3x + 9;
     
     
    y
    =
    3
    x +
    9
    ;
     
     
    4
    4
     
     
    m
    =
    4
     
     
    3
     
     
    y – 1
    =
    4
    (x + 2)
     
     
    3
     
     
    y
    =
    4
    x +
    11
     
     
    3
    3
     
    (d)
    x
    =
    –2
     
    (e)
    contains (–2, 1) and (0, 3);
     
     
    m
    =
    3 – 1
    ;
     
     
    0 + 2
     
     
    y
    =
    x + 3
     

  5. Show that (2, –1), (5, 3), and (11, 11) are on the same line.
  6. 💬 SOLUTION:
     
    m1
    =
    3 + 1
    =
    4
    ;
     
     
    5 – 2
    3
     
     
    m2
    =
    11 – 3
    =
    8
    =
    4
    ;
     
     
    11 – 5
    6
    3
     
     
    m3
    =
    11 + 1
    =
    12
    =
    4
    ;
     
     
    11 – 2
    9
    3
     
    m1 = m2 = m3 , so the point lie on the same line.

    Calculus 9th Purcell Chapter 0 - 0.9

  7. Figure 1 can be represented by which equation?
  8. (a)
    y = x3
    (b)
    x = y3
    (c)
    y = x2
    (d)
    x = y3
    💬 SOLUTION:
    The figure is a cubic with respect to y.
    The equation is (b) x = y3.

  9. Figure 2 can be represented by which equation?
  10. (a)
    y = ax2 + bx + c, with a > 0, b > 0, and c > 0
    (b)
    y = ax2 + bx + c, with a < 0, b > 0, and c > 0
    (c)
    y = ax2 + bx + c, with a < 0, b > 0, and c < 0
    (d)
    y = ax2 + bx + c, with a > 0, b > 0, and c < 0
    💬 SOLUTION:
    The figure is a quadratic, opening downward, with a negative y-intercept.
    The equation is (c) y = ax2 + bx + c, with a < 0, b > 0 , and c < 0.

    Semoga Bermanfaat 😁

    In Problems 35-38, sketch the graph of each equation.
  11. 3y – 4x = 6
  12. 💬 SOLUTION:

    Calculus 9th Purcell Chapter 0 - 0.9


  13. x2 – 2x + y2 = 3
  14. 💬 SOLUTION:
     
    x2 – 2x + y2
    =
    3
     
    x2 – 2x + 1 + y2
    =
    4
     
    (x – 1)2 + y2
    =
    4

    Calculus 9th Purcell Chapter 0 - 0.9


  15. y
    =
    2x
    x2 + 2
  16. 💬 SOLUTION:

    Calculus 9th Purcell Chapter 0 - 0.9


  17. x = y2 – 3
  18. 💬 SOLUTION:

    Calculus 9th Purcell Chapter 0 - 0.9


  19. Find the points of intersection of the graphs of y = x2 – 2x + 4 and yx = 4
  20. 💬 SOLUTION:
     
    y
    =
    x2 – 2x + 4
    and
     
    y - x
    =
    4;
     
     
    x + 4
    =
    x2 – 2x + 4
     
     
    x2 – 3x
    =
    0
     
     
    x(x – 3)
    =
    0
     
     
    point of intersection: (0, 4) and (3, 7)

  21. Among all lines perpendicular to 4xy = 2 find the equation of the one that, together with the positive x- and y-axes, forms a triangle of area 8.
  22. 💬 SOLUTION:
     
    4xy
    =
    2
     
     
    y
    =
    4x – 2;
     
     
    m
    =
    1
     
     
    4
     
     
    contains (a, 0), (0, b);
     
     
    ab
    =
    8
     
     
    2
     
     
    ab
    =
    16
     
     
    b
    =
    16
     
     
    a
     
     
    b - 0
    =
    b
    =
    1
    ;
     
    0 – a
    a
    4
     
    a
    =
    4b
     
     
    a
    =
    4 (
    16
    )
     
     
    a
     
     
    a2
    =
    64
     
     
    a
    =
    8
     
     
    b
    =
    16
     
     
    a
     
     
    b
    =
    2;
     
     
    y
    =
    1
    x + 2
     
     
    4
     

  23. For f(x) = 1/(x + 1)1/x, find each value (if possible).
  24. (a)
    f (1)
    (b)
    f (–1/2)
    (c)
    f (–1)
    (d)
    f (t – 1)
    (e)
    f (1/t)
    💬 SOLUTION:
    (a)
    f (1)
    =
    1
    1
    =
    1
     
    1 + 1
    1
    2
    (b)
    f (–1/2)
    =
    1
    1
    =
    4
     
    1/2 + 1
    1/2
    (c)
    f (–1) does not exist.
    (d)
    f (t – 1)
    =
    1
    1
    =
    1
    1
     
    t – 1 + 1
    t – 1
    t
    t – 1
    (e)
    f (1/t)
    =
    1
    1
    =
    t
    t
     
    1/t + 1
    1/t
    1 + t

    Semoga Bermanfaat 😁

  25. For g(x) = (x + 1)/x find and simplify each value.
  26. (a)
    g (2)
    (b)
    g (1/2)
    (c)
    g(2 + h) – g(2)
     
    h
     
    💬 SOLUTION:
    (a)
    g (2)
    =
    2 + 1
    =
    3
     
     
    2
    2
     
    (b)
    g (1/2)
    =
    1/2 + 1
    =
    3
     
     
    1/2
     
     
     
     
    2 + h + 1
    2 + 1
    (c)
    g(2 + h) – g(2)
    =
    2 + h
    2
     
    h
    h
     
     
     
    2h + 6 – 3h – 6
     
     
     
    =
    2 (2 + h)
     
     
     
    h
     
     
     
     
    h
     
     
     
    =
    2 (2 + h)
     
     
     
    h
     
     
    g(2 + h) – g(2)
    =
    –1
     
     
    h
    2 (2 + h)
     

  27. Describe the natural domain of each function.
  28. (a)
    g (2)
    =
    x
     
     
    x2 – 1
     
    (b)
    g (x)
    =
    √(4 – x2)
    💬 SOLUTION:
    (a)
    {x ℝ : x–1, 1}
    (b)
    {x ℝ : |x| ≤ 2}

  29. Which of the following functions are odd? Even? Neither even nor odd?
  30. (a)
    f (x)
    =
    3x
     
     
    x2 + 1
     
    (b)
    g (x)
    =
    |sin x| + cos x
    (c)
    h (x)
    =
    x3 + sin x
    (d)
    k (x)
    =
    x2 + 1
     
     
    |x| + x4
     
    💬 SOLUTION:
    (a)
    f (x)
    =
    3(x)
     
     
    (–x)2 + 1
     
     
     
    =
    3(x)
    ; odd
     
     
    (x)2 + 1
     
    (b)
    g (x)
    =
    |sin (x)| + cos (x)
     
     
     
     
    =
    |sin x| + cos x
     
     
     
     
    =
    |sin x| + cos x
    ; even
     
    (c)
    h (x)
    =
    (x)3 + sin (x)
     
     
     
    =
    x3 sin x
    ; odd
    (d)
    k (x)
    =
    (x)2 + 1
     
     
    |x| + (x)4
     
     
     
    =
    x2 + 1
    ; even
     
     
    |x| + x4
     

  31. Sketch the graph of each function.
  32. (a)
    f (x)
    =
    x2 1
     
    (b)
    g (x)
    =
    x
     
     
    x2 + 1
     
    (c)
    h (x)
    = {
    x2
    if 0 ≤ x ≤ 2
     
    6 x
    if x > 2
    💬 SOLUTION:
    (a)
    f (x)
    =
    x2 1

    Calculus 9th Purcell Chapter 0 - 0.9

    (b)
    g (x)
    =
    x
     
    x2 + 1

    Calculus 9th Purcell Chapter 0 - 0.9

    (c)
    h (x)
    = {
    x2
    if 0 ≤ x ≤ 2
     
    6 x
    if x > 2

    Calculus 9th Purcell Chapter 0 - 0.9


  33. Suppose that f is an even function satisfying f(x) = –1 + √x for x ≥ 0. Sketch the graph of f for –4 ≤ x ≤ 4.
  34. 💬 SOLUTION:

    Calculus 9th Purcell Chapter 0 - 0.9


  35. An open box is made by cutting squares of side x inches from the four corners of a sheet of cardboard 24 inches by 32 inches and then turning up the sides. Express the volume V(x) in terms of x. What is the domain for this function?
  36. 💬 SOLUTION:
     
    V(x) = x(32 – 2x)(24 – 2x)
     
    Domain [0, 12]

  37. Let f(x) = x – (1/x) and g(x) = x2 + 1. Find each value.
  38. (a)
    (f + g)(2)
    (b)
    (f g)(2)
    (c)
    (f g)(2)
    (d)
    (g f)(2)
    (e)
    f 3 (–1)
    (f)
    f 2 (2) + g2 (2)
    💬 SOLUTION:
    (a)
    (f + g)(2)
    =
    (2 –
    1
    ) + (22 + 1)
    =
    13
     
    2
    2
    (b)
    (f g)(2)
    =
    (
    3
    ) (5)
    =
    15
     
    2
    2
    (c)
    (fg)(2)
    =
    f(5)
    =
    5 –
    1
    =
    24
     
    5
    5
    (d)
    (gf)(2)
    =
    g(
    3
    )
    =
    (
    3
    )2 + 1 =
    13
     
    2
    2
    4
    (e)
    f 3 (–1)
    =
    (–1 +
    1
    )3
    =
    0
     
    1
    (f)
    f 2 (2) + g2 (2)
    =
    (
    3
    )2 + (5)2
     
    2
     
     
    =
    9
    + 25
     
     
    4
     
     
     
    =
    109
     
     
    4
     

    Semoga Bermanfaat 😁

  39. Sketch the graph of each of the following, making use of translations.
  40. (a)
    y = 1/4 x2
    (b)
    y = 1/4 (x + 2)2
    (c)
    y = –1 + 1/4 (x + 2)2
    💬 SOLUTION:
    (a)
    y = 1/4 x2

    Calculus 9th Purcell Chapter 0 - 0.9

    (b)
    y = 1/4 (x + 2)2

    Calculus 9th Purcell Chapter 0 - 0.9

    (c)
    y = –1 + 1/4 (x + 2)2

    Calculus 9th Purcell Chapter 0 - 0.9


  41. Let f (x) = √(16 – x) and g(x) = x4. What is the domain of each of the following?
  42. (a)
    f
    (b)
    f g
    (c)
    g f
    💬 SOLUTION:
    (a)
    f = (–∞, 16]
    (b)
    f g = √(16 – x4); domain [–2, 2]
    (c)
    g f = [√(16 – x)] 4 = (16 – x)2;
     
    domain (–∞, 16]
     
    (note: the simplification [√(16 – x)] 4 = (16 – x)2 is only true given the restricted domain)

  43. Write F(x) = √(1 + sin2 x) as the complosite of four functions, fghk.
  44. 💬 SOLUTION:
    f(x) = √x, g(x) = 1 + x, h(x) = x2, k(x) = sin x, F(x) = √(1 + sin2 x) = f g h k.

  45. Calculate each of the following without using a calculator.
  46. (a)
    sin 570°
    (b)
    cos /2
    (c)
    cos (–13π/6)
    💬 SOLUTION:
    (a)
    sin (570°) = sin (570°) = –1/2
    (b)
    cos (/2) = cos (/2) = 0
    (c)
    cos (–13π/6) = cos (–π/6) = √3/2

  47. If sin t = 0.8 and cos t < 0, find each value.
  48. (a)
    sin (–t)
    (b)
    cos (t)
    (c)
    sin (2t)
    (d)
    tan (t)
    (e)
    cos [(π/6) – t]
    (f)
    sin (π + t)
    💬 SOLUTION:
    (a)
    sin (–t) = –sin (t) = –0.8
    (b)
    sin2 t + cos2 t = 1
     
    cos2 t = 1 – (0.8)2 = 0.36
     
    cos t = –0.6
    (c)
    sin (2t) = 2 sin t cos t = 2(0.8)(–0.6) = –0.96
    (d)
    tan (t) = sin t/cos t = 0.8/–0.6 = –4/3 ≈ –1.333
    (e)
    cos [(π/6) – t] = sin t = 0.8
    (f)
    sin (π + t) = –sin t = –0.8

  49. Write sin 3t in terms of sin t. Hint: 3t = 2t + t.
  50. 💬 SOLUTION:
     
    sin 3t = sin (2t + t) = sin 2t cos t + cos 2t sin t
     
    = 2 sin t cos2 t + (1 – 2 sin2 t) sin t
     
    = 2 sin t (1 – 2 sin2 t) + sin t – 2 sin3 t
     
    = 2 sin t – 2 sin3 t + sin t – 2 sin3 t
     
    = 3 sin t – 4 sin3 t

  51. A fly sits on the rim of a wheel spinning at the rate of 20 revolutions per minute. If the radius of the whee; is 9 inches, how far does the fly travel in 1 second?
  52. 💬 SOLUTION:
     
    s = rt
     
    = 9 (20 rev/min)(2π rad/rev)(1 min/60 sec)(1 sec) = 6π
     
    ≈ 18.85 in.

Semoga Bermanfaat 😁

Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - Sample Test Problems - Number 30 – 55. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆

Ahmad Qolfathiriyus Firdaus

We are bantalmateri.com that utilizes the internet and digital media in delivering material, questions and even the form of discussion. In the current generation, online learning methods (commonly called daring) are considered closer to students who are very integrated and difficult to separate from technology. The emergence of technology has also facilitated the implementation of schools even though students and educators alike have to adapt.

No comments:

Post a Comment