CHAPTER 1 LIMITS
SECTION 1.2 Rigorous Study of Limits
Problem Set 1.2, Number 1 – 33.
- limt → a f(t) = M
- limu → b g(u) = L
- limz → d h(z) = P
- limy → e Φ(y) = B
- limx → c– f(x) = L
- limt → a+ g(t) = D
- f(x) = 2x
- f(x) = x2
- f(x) = √(8x)
- f(x) = 8/x
- Lim(2x – 1) = –1x → 0
- Lim(3x – 1) = –64x → -21
- limx → 5x2 – 25= 10x – 5
- limx → 0(2x2 – x)= – 1x
- limx → 52x2 – 11x + 5= 9x – 5
- lim√(2x) = √2x → 1
- Limx → 4√(2x – 1)= √7√(x – 3)
- limx → 114x2 – 20x + 6= 8x – 1
- limx → 110x3 – 26x2 + 22x – 6= 4(x – 1)2
- lim(2x2 + 1) = 3x → 1
- lim(x2 – 2x – 1) = 2x → -1
- limx4 = 0x → 0
- Prove that if limx→c f(x) = L and limx→c f(x) = M, then L = M.
- Let F and G be functions such that 0 ≤ F(x) ≤ G(x) for all x near c, except possibly at c. Prove that if limx→c f(x) = 0, then limx→c f(x) = 0.
- Prove that limx→0 x4 sin2 (1/x) = 0. Hint: Use Problems 22 and 24.
- Prove that limx→0+ √x = 0.
- By considering left- and right-hand limits, prove that limx→0 |x| = 0.
- Prove that if |f(x)| < B for |x – a| < 1 and limx→a g(x) = 0, then limx→a f(x) g(x) = 0.
- Suppose that limx→a f(x) = L and that f(a) exists (though it may be different from L). Prove that f is bounded on some interval containing a; that is, show that there is an interval (c, d) with c < a < d and a constant M such that |f(x)| ≤ M for all x in (c, d).
- Prove that if f(x) ≤ g(x) for all x in some deleted interval about a and if limx→a f(x) = L and limx→a g(x) = M, then L ≤ M.
- Which of the following are equivalent to the definition of limit?
- State in ε – δ language what it means to say limx→c f(x) ≠ L.
- Suppose we wish to give an ε – δ proof that
In Problems 1 – 6, give the appropriate ε – δ definition, of each statement.
❤
|
PEMBAHASAN:
|
0 < |t – a| < δ ⇒ |f(t) – M| < ε
❤
|
PEMBAHASAN:
|
0 < |u – b| < δ ⇒ |g(u) – L| < ε
❤
|
PEMBAHASAN:
|
0 < |z – d| < δ ⇒ |h(z) – P| < ε
❤
|
PEMBAHASAN:
|
0 < |y – e| < δ ⇒ |Φ(y) – B| < ε
❤
|
PEMBAHASAN:
|
0 < c – x < δ ⇒ |f(x) – L| < ε
❤
|
PEMBAHASAN:
|
0 < t – a < δ ⇒ |g(t) – D| < ε
In Problem 7 – 10, plot the function f(x) over the interval [1.5, 2.5]. Zoom in on the graph of each function to determine how close x must be to 2 in order that f(x) is within 0.002 of 4. Your answer should be of the form “If x is within ______ of 2, then f(x) is within 0.002 of 4.”
❤
|
PEMBAHASAN:
|
❤
|
PEMBAHASAN:
|
❤
|
PEMBAHASAN:
|
❤
|
PEMBAHASAN:
|
BACA JUGA:
|
|
In Problems 11 – 22, give an ε – δ, proof of each limit fact.
❤
|
PEMBAHASAN:
|
0
< | x – 0| < δ
|
⇒
|
|(2x – 1)
– (–1)| < ε
|
|2x
– 1 + 1| < ε
|
⇔
|
|2x| <
ε
|
|
⇔
|
2 |x|
< ε
|
|
⇔
|
|x| < ε/2
|
|
|
|
δ = ε/2;
0 < |x – 0| < δ
|
||
|(2x – 1) – (–1)| = |2x| =
2 |x| < 2δ = ε
|
❤
|
PEMBAHASAN:
|
0
< | x + 21| < δ
|
⇒
|
|(3x – 1)
– (–64)| < ε
|
|3x
– 1 + 64| < ε
|
⇔
|
|3x + 63|
< ε
|
|
⇔
|
|3(x + 21)|
< ε
|
|
⇔
|
3 |x + 21|
< ε
|
|
⇔
|
|x + 21|
< ε/3
|
|
|
|
δ = ε/3;
0 < |x + 21| < δ
|
||
|(3x – 1) – (–64)| = |3x +
63| = 3 |x + 21| < 3δ = ε
|
❤
|
PEMBAHASAN:
|
0
< | x + 21| < δ
|
⇒
|
|
x2 – 25
|
– 10
|
< ε
|
|
x – 5
|
|
|
x2 – 25
|
– 10
|
< ε
|
⇔
|
|
(x –
5) (x + 5)
|
– 10
|
< ε
|
|
|
x – 5
|
|
x – 5
|
|
|
|
|
⇔
|
|(x +
5) – 10| < ε
|
|
|
|
|
⇔
|
|x –
5| < ε
|
|
|
|
|
|
|
δ = ε;
0 < |x – 5| < δ
|
|
|
x2 – 25
|
–
10
|
=
|
|
(x
– 5)(x + 5)
|
–
10
|
=
|
|x + 5 –
10|
|
|
x – 5
|
x – 5
|
=
|x – 5| < δ = ε
|
❤
|
PEMBAHASAN:
|
0
< | x – 0| < δ
|
⇒
|
|
2x2 –
x
|
– (–1)
|
< ε
|
|
x
|
|
|
2x2 –
x
|
+ 1
|
< ε
|
⇔
|
|
x(2x –
1)
|
+ 1
|
< ε
|
|
|
x
|
|
x
|
|
|
|
|
⇔
|
|2x –
1 + 1| < ε
|
|
|
|
|
⇔
|
|2x|
< ε
|
|
|
|
|
⇔
|
2 |x|
< ε
|
|
|
|
|
⇔
|
|x| < ε/2
|
|
|
|
|
|
|
δ = ε/2;
0 < |x – 0| < δ
|
|
|
2x2
– x
|
–
(–1)
|
=
|
|
x(2x –
1)
|
+
1
|
=
|
|2x – 1 +
1|
|
|
x
|
x
|
= |2x| = 2|x| < 2δ
= ε
|
❤
|
PEMBAHASAN:
|
0
< |x – 5| < δ
|
⇒
|
|
2x2 –
11x + 5
|
– 9
|
< ε
|
|
x – 5
|
|
|
2x2 –
11x + 5
|
– 9
|
< ε
|
⇔
|
|
(2x –
1)(x – 5)
|
– 9
|
< ε
|
|
|
x – 5
|
|
x
–
5
|
|
|
|
|
⇔
|
|2x –
1 – 9| < ε
|
|
|
|
|
⇔
|
|2(x – 5)|
< ε
|
|
|
|
|
⇔
|
|x – 5|
< ε/2
|
|
|
|
|
|
|
δ = ε/2;
0 < |x – 5| < δ
|
|
|
2x2 –
11x + 5
|
–
9
|
=
|
|
(2x –
1)(x – 5)
|
–
9
|
|
x
–
5
|
x
–
5
|
=
|2x – 1 – 9| = |2(x – 5)| = 2|x
– 5| < 2δ = ε
|
❤
|
PEMBAHASAN:
|
0
< | x – 1| < δ
|
⇒
|
|√2x – √2|
< ε
|
|√2x – √2|
< ε
|
|
|
|
⇔
|
|
(√2x
– √2)(√2x + √2)
|
|
< ε
|
|
|
√2x
+ √2
|
|
⇔
|
|
2x
– 2
|
|
< ε
|
|
|
√2x
+ √2
|
|
⇔
|
2
|
|
x – 1
|
|
< ε
|
|
|
√2x
+ √2
|
δ = (√2)ε/2;
0 < |x – 1| < δ
|
|√2x – √2|
|
⇒
|
|
(√2x
– √2)( √2x + √2)
|
|
|
√2x
+ √2
|
=
|
|
2x
– 2
|
|
|
√2x
+ √2
|
2
|x – 1|
|
≤
|
2
|x – 1|
|
<
|
2δ
|
=
|
ε
|
√2x
+ √2
|
√2
|
√2
|
❤
|
PEMBAHASAN:
|
0
< |x – 4| < δ
|
⇒
|
|
√(2x –
1)
|
– √7
|
< ε
|
|
√(x
– 3)
|
|
|
√(2x –
1)
|
– √7
|
< ε
|
⇔
|
|
√(2x –
1) – √7(x – 3)
|
|
< ε
|
|
|
√(x
– 3)
|
|
√(x
– 3)
|
⇔
|
|
[√(2x
– 1) – √(7(x – 3))] [√(2x
– 1) + √(7(x – 3))]
|
|
< ε
|
|
√(x
– 3) [√(2x – 1) + √(7(x – 3))]
|
⇔
|
|
2x
– 1 – (7x – 21)
|
|
< ε
|
|
√(x
– 3) [√(2x – 1) + √(7(x – 3))]
|
⇔
|
|
–5
(x – 4)
|
|
< ε
|
|
√(x
– 3) [√(2x – 1) + √(7(x – 3))]
|
⇔
|
|x – 4| ·
|
5
|
< ε
|
√(x
– 3) [√(2x – 1) + √(7(x – 3))]
|
To
bound
|
5
|
, agree that
|
√(x
– 3) [√(2x – 1) + √(7(x – 3))]
|
δ
≤
|
1
|
.
If δ ≤
|
1
|
,
then
|
7
|
<
x <
|
9
|
,
so
|
2
|
2
|
2
|
2
|
0.65
<
|
5
|
< 1.65 and
|
√(x
– 3) [√(2x – 1) + √(7(x – 3))]
|
hence
|
|x – 4| ·
|
5
|
< ε
|
√(x
– 3) [√(2x – 1) + √(7(x – 3))]
|
⇔
|
|x – 4| <
|
ε
|
1.65
|
For whatever ε
is chosen, let δ be the smaller of
|
1
|
and
|
ε
|
.
|
2
|
1.65
|
δ
=
min
|
{
|
1
|
,
|
ε
|
}
|
, 0 < |x
– 4| < δ
|
2
|
1.65
|
|
√(2x
– 1)
|
–
√7
|
|
=
|x – 4| ·
|
5
|
|
√(x
– 3)
|
|
√(x
– 3) [√(2x – 1) + √(7(x – 3))]
|
< |x
– 4|(1.65) < 1.65 δ ≤ ε
|
Since
δ =
|
1
|
only
when
|
1
|
≤
|
ε
|
so
1.65 δ ≤ ε.
|
2
|
2
|
1.65
|
❤
|
PEMBAHASAN:
|
0
< |x – 1| < δ
|
⇒
|
|
14x2
– 20x + 6
|
– 8
|
< ε
|
|
x – 1
|
|
|
14x2
– 20x + 6
|
– 8
|
< ε
|
⇔
|
|
2(7x –
3) (x – 1)
|
– 8
|
< ε
|
|
|
x – 1
|
|
x – 1
|
|
|
⇔
|
|2(7x –
3) – 8| < ε
|
|
|
⇔
|
|14(x – 1)|
< ε
|
|
|
⇔
|
14|x –
1| < ε
|
|
|
⇔
|
|x – 1|
< ε/14
|
|
δ = ε/14;
0 < |x – 1| < δ
|
|
|
14x2
– 20x + 6
|
– 8
|
=
|
|
2(7x –
3) (x – 1)
|
– 8
|
|
|
x – 1
|
|
x – 1
|
=
|
|2(7x –
3) – 8|
|
=
|
|14(x – 1)|
= 14|x – 1| 14δ = ε
|
❤
|
PEMBAHASAN:
|
0
< |x – 1| < δ
|
⇒
|
|
10x3
– 26x2 + 22x – 6
|
– 4
|
< ε
|
|
(x
– 1)2
|
|
|
10x3
– 26x2 + 22x – 6
|
– 4
|
< ε
|
⇔
|
|
(10x –
6) (x – 1)2
|
– 4
|
< ε
|
|
|
(x
– 1)2
|
|
(x
– 1)2
|
|
|
⇔
|
|10x –
6 – 4| < ε
|
|
|
⇔
|
|10(x – 1)|
< ε
|
|
|
⇔
|
10|x –
1| < ε
|
|
|
⇔
|
|x – 1|
< ε/10
|
|
δ = ε/10;
0 < |x – 1| < δ
|
|
|
10x3
– 26x2 + 22x – 6
|
– 4
|
=
|
|
(10x –
6) (x – 1)2
|
– 4
|
|
|
(x
– 1)2
|
|
(x
– 1)2
|
|
=
|
|10x –
6 – 4|
|
|
=
|
|10(x – 1)|
|
|
=
|
10|x
– 1| < 10δ = ε
|
❤
|
PEMBAHASAN:
|
0
< |x – 1| < δ
|
⇒
|
|(2x2
+ 1) – 3| < ε
|
|2x2
+ 1 – 3| < ε
|
=
|
|2x2
– 2|
|
|
=
|
2 |x
+ 1| |x – 1|
|
To
bound |2x + 2|, agree that δ ≤ 1.
|
||
|x
– 1| < δ implies
|
||
|2x + 2|
|
=
|
|2x – 2
+ 4|
|
|
≤
|
|2x – 2|
+ |4|
|
|
<
|
2 + 4 = 6
|
δ ≤ ε/6;
δ = min{1, ε/6}; 0 < |x – 1|
< δ
|
||
|(2x2
+ 1) – 3|
|
=
|
|2x2
– 2|
|
=
|2x
+ 2||x – 1| < 6 ‧ (ε/6)
= ε
|
❤
|
PEMBAHASAN:
|
0
< |x + 1| < δ
|
⇒
|
|(x2
– 2x – 1| < ε
|
|x2 – 2x – 1
– 2|
|
=
|
|x2 – 2x – 3|
|
|
=
|
|x + 1| |x
– 3|
|
To
bound |x – 3|, agree that δ ≤ 1.
|
||
|x
+ 1| < δ implies
|
||
|x – 2|
|
=
|
|x + 1 – 4|
|
|
≤
|
|x + 1| + |–4|
|
|
<
|
1 + 4 = 5
|
δ ≤ ε/5;
δ = min{1, ε/5}; 0 < |x + 1|
< δ
|
||
|(x2
– 2x – 1) – 2|
|
=
|
|x2 – 2x – 3|
|
=
|x + 1||x
– 3| < 5 ‧ (ε/5) = ε
|
BACA JUGA:
|
|
❤
|
PEMBAHASAN:
|
0
< |x| < δ
|
⇒
|
|x4 – 0| = |x4|
< ε
|
|x4|
|
=
|
|x||x3|
|
To
bound |x3|, agree that δ ≤ 1.
|
||
|x| < δ ≤
1 implies
|
||
|x3|
|
=
|
|x|3 ≤ 1
|
so δ
|
≤
|
ε.
|
δ = min{1, ε};
0 < |x| < δ
|
||
|x4|
|
=
|
|x||x3| < ε ‧
1 = ε
|
❤
|
PEMBAHASAN:
|
Choose
ε > 0. Then since limx→c f(x)
= L, there is some δ1 > 0 such that
|
|||
0
< |x – c| < δ1
|
⇒
|
|f(x) – L|
< ε.
|
|
Since limx→c
f(x) = M, there is some δ2 > 0 such
that
|
|||
0
< |x – c| < δ2
|
⇒
|
|f(x) – M|
< ε.
|
|
Let δ =
min{δ1, δ2} and choose x0
such that
|
|||
0
< |x0
|
–
|
c| < δ.
|
|
Thus,
|f(x0) – L| < ε
|
⇒
|
–ε < f(x0)
– L < ε
|
|
|
⇒
|
– f(x0)
– ε < L < – f(x0) + ε
|
|
|
⇒
|
f(x0)
– ε < L < f(x0) + ε.
|
|
Similarly,
|
|
|
|
f(x0)
– ε <
|
M
|
< f(x0)
+ ε.
|
|
Thus,
|
|
|
|
–2ε < L
– M < 2ε. As ε ⇒ 0, L – M
→ 0, so L = M.
|
❤
|
PEMBAHASAN:
|
Since
limx→c G(x) = 0, then given any ε
> 0, we can find δ1 > 0 such that whenever
|
|x – c|
< δ, |G(x)| < ε
|
Take
any ε > 0 and the corresponding δ that works for G(x),
then |x – c| < δ implies
|
|F(x)
– 0| = |F(x)| ≤ |G(x)| < ε since
|
limx→c
G(x) = 0.
|
Thus,
limx→c F(x) = 0.
|
❤
|
PEMBAHASAN:
|
For
all x ≠ 0, 0 ≤ sin2 (1/x) ≤ 1
so
|
x4 sin2
(1/x) ≤ x4 for all x ≠
0. By Problem 18,
|
limx→0
x4 = 0, so, by Problem 20,
|
limx→0
x4 sin2 (1/x) = 0.
|
❤
|
PEMBAHASAN:
|
0
< x < δ ⇒ |√x
– 0| = |√x| = √x < ε
|
For
x > 0, (√x)2 = x.
|
√x
< ε ⇔ (√x)2 = x <
ε2
|
δ = ε2;
0 < x < δ ⇒ √x < √δ
= √ε2 = ε
|
❤
|
PEMBAHASAN:
|
limx→0+
|x| : 0 < x < δ ⇒
||x| – 0| < ε
|
For
x ≥ 0, |x| = x.
|
δ = ε; 0
< x < δ ⇒ ||x| – 0| = |x|
= x < δ = ε
|
Thus,
limx→0+ |x| = 0.
|
limx→0–
|x| : 0 < 0 – x < δ ⇒
||x| – 0| < ε
|
For
x < 0, |x| = –x; note also that ||x||
= |x| since |x| ≥ 0.
|
δ = ε; 0
< –x < δ ⇒ ||x|| = |x|
= –x < δ = ε
|
Thus,
limx→0– |x| = 0,
|
since
limx→0+ |x| = limx→0–
|x| = 0, limx→0 |x|
= 0.
|
❤
|
PEMBAHASAN:
|
Choose
ε > 0. Since limx→a g(x)
= 0 there is some δ1 > 0 such that
|
0
< |x – a| < δ1 ⇒
|g(x) – 0| < ε/B.
|
Let
δ = min{1, δ1}, then |f(x)|
< B for |x – a| < δ or |x
– a| < δ ⇒ |f(x)|
< B.
Thus,
|x – a| < δ ⇒ |f(x)
g(x) – 0| = |f(x) g(x)|
|
= |f(x)|
|g(x)| < B · ε/B
= ε so limx→a f(x)
g(x) = 0.
|
❤
|
PEMBAHASAN:
|
Choose
ε > 0. Since limx→a f(x)
= L, there is a δ > 0 such that for 0 < |x –
a| < δ, |f(x) – L| < ε.
|
That
is, for
|
a – δ <
x < a or a < x < a + δ.
|
L
–
ε < f(x) < L + ε.
|
Let
f(a) = A,
|
M = max {|L
– ε|, |L + ε|, |A|}, c
= a – δ, d = a + δ.
|
Then
for x in (c, d), |f(x)| ≤
M, since either x = a, in which case
|
|f(x)| =
|f(a)| = |A| ≤ M or 0
< |x – a| < δ so
|
L – ε <
f(x) < L – ε and |f(x)|
< M.
|
❤
|
PEMBAHASAN:
|
Suppose
that L > M. Then L – M = α > 0.
|
Now
take ε < α/2 and δ = min{δ1,
δ2} where
|
0
< |x – a| < δ1 ⇒
|f(x) – L| < ε and
|
0
< |x – a| < δ2 ⇒
|g(x) – L| < ε.
|
Thus,
for 0 < |x – a| < δ,
|
L – ε <
f(x) < L + ε and M – ε < g(x)
< M + ε.
|
Combine
the inequalities and use the fact that f(x) ≤ g(x)
to get
|
L – ε <
f(x) ≤ g(x) < M + ε which leads
to
|
L – ε <
M + ε or L – M < 2ε.
|
However,
|
L – M = α
> 2ε
|
which
is a contradiction.
|
Thus
L ≤ M.
|
(a)
|
For
some ε > 0 and every δ > 0, 0 < |x – c|
< δ ⇒ |f(x) – L|
< ε.
|
(b)
|
For
some δ > 0, there is a corresponding ε > 0 such that
|
|
0
< |x – c| < ε ⇒
|f(x) – L| < δ
|
(c)
|
For
every positive integer N, there is a corresponding positive integer M
such that 0 < |x – c| < 1/M ⇒
|f(x) – L| < 1/N.
|
(d)
|
For
every ε > 0, there is a corresponding δ > 0 such that 0
< |x – c| < δ and |f(x)
– L| < ε for some x.
|
❤
|
PEMBAHASAN:
|
(b)
and (c) are equivalent to the definition of limit.
|
❤
|
PEMBAHASAN:
|
For
every ε > 0 and δ > 0 there is some x with
|
0
< |x – c| < δ such that |f(x)
– L| > ε.
|
lim
x → 3
|
x + 6
|
= –1
|
x4 – 4x3
– 2x2 + x + 6
|
We
begin by writing
|
x + 6
|
+ 1 in the form
(x – 3) g(x).
|
x4 – 4x3
– 2x2 + x + 6
|
(a)
|
Determine
g(x).
|
(b)
|
Could
we choose δ = min(1, ε/n) for some n? Explain.
|
(c)
|
If
we choose δ = min(¼, ε/m), what is the smallest integer m
that we could use?
|
❤
|
PEMBAHASAN:
|
(a)
|
g(x)
|
=
|
x3 – x2
– 2x – 4
|
x4 – 4x3
+ x2 + x + 6
|
(b)
|
No, because
|
x + 6
|
+ 1
|
x4 – 4x3
+ x2 + x + 6
|
|||
has an asymptote
at x ≈ 3.49.
|
(c)
|
If δ ≤ ¼,
then 2.75 < x < 3 or 3 < x < 3.25 and by graphing
|
|||
y = |g(x)|
=
|
x3 – x2
– 2x – 4
|
|
||
x4 – 4x3
+ x2 + x + 6
|
|
|||
on
the interval [2.75, 3.25], we see that
|
||||
0
<
|
x3 – x2
– 2x – 4
|
< 3
|
||
x4 – 4x3
+ x2 + x + 6
|
||||
so
m mush be at least three.
|
BACA JUGA:
|
|
Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 1 - 1.2 Rigorous Study of Limits - Number 1 – 33. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment