CHAPTER 1 LIMITS
SECTION 1.1 Introduction to Limits
Problem Set 1.1, Number 1 – 28.
- lim(x – 5)x → 3
- lim(1 – 2t)t → –1
- lim(x2 + 2x – 1)x → –2
- lim(x2 + 2t – 1)x → –2
- lim(t2 – 1)t → –1
- lim(t2 – x2)t → –1
- limx → 2x2 – 4x – 2
- limt → –7t2 + 4t – 21t + 7
- limx → –1x3 – 4x2 + x + 6x + 1
- limx → 0x4 + 2x3 – x2x2
- limx → –tx2 – t2x + t
- limx → 3x2 – 9x – 3
- limt → 2√[(t + 4)(t – 2)4](3x – 6)2
- limt → 7+√(t – 7)3t – 7
- limx → 3x4 – 18x2 + 81(x – 3)2
- limu → 1(3u + 4)(2u – 2)3(u – 1)2
- limh → 0(2 + h)2 – 4h
- limh → 0(x + h)2 – x2h
- limx → 0sin x2x
- limt → 01 – cos t2t
- limx → 0(x – sin x)2x2
- limx → 0(1 – cos x)2x2
- limt → 1t2 – 1sin (t – 1)
- limx → 3x – sin (x – 3) – 3x – 3
- limx → π1 + sin (x – 3π/2)x – π
- limt → 01 – cot t1/t
- limx → π/4(x – π/4)2(tan x – 1)2
- limu → π/22 – 2 sin u3u
In Problems 1 – 6, find the indicated limit.
❤
|
PEMBAHASAN:
|
lim
|
(x – 5)
|
= –2
|
x → 3
|
|
|
❤
|
PEMBAHASAN:
|
lim
|
(1 – 2t)
|
= 3
|
t → –1
|
|
|
❤
|
PEMBAHASAN:
|
lim
|
(x2
+ 2x – 1)
|
= (–2)2
+ 2(–2) – 1 = –1
|
x → –2
|
|
|
❤
|
PEMBAHASAN:
|
lim
|
(x2
+ 2t – 1)
|
= (–2)2
+ 2t – 1 = 3 + 2t
|
x → –2
|
|
|
❤
|
PEMBAHASAN:
|
lim
|
(t2
– 1)
|
= ((–1)2
– 1) = 0
|
t → –1
|
|
|
❤
|
PEMBAHASAN:
|
lim
|
(t2
– x2)
|
= ((–1)2
– x2) = 1 – x2
|
t → –1
|
|
|
BACA JUGA:
|
|
In Problems 7-18, find the indicated limit. In most cases, it will be wise to do some algebra first (see Example 2).
❤
|
PEMBAHASAN:
|
lim
x → 2
|
x2 – 4
|
=
|
lim
x → 2
|
(x
– 2)(x + 2)
|
||
x – 2
|
x
–
2
|
|||||
|
|
=
|
lim
|
(x + 2)
|
||
|
x → 2
|
|
||||
|
|
=
|
2 + 2 = 4
|
❤
|
PEMBAHASAN:
|
lim
t → –7
|
t2 + 4t – 21
|
t + 7
|
=
|
lim
t → –7
|
(t
+ 7)(t – 3)
|
t + 7
|
=
|
lim
|
(t – 3)
|
t → –7
|
|
=
|
–7 – 3 = –10
|
❤
|
PEMBAHASAN:
|
lim
x → –1
|
x3 – 4x2
+ x + 6
|
x + 1
|
=
|
lim
x → –1
|
(x
+ 1)(x2 – 5x + 6)
|
x + 1
|
=
|
lim
|
(x2
– 5x + 6)
|
x → –1
|
=
|
(–1)2
– 5(–1) + 6 = 12
|
❤
|
PEMBAHASAN:
|
lim
x → 0
|
x4 + 2x3
– x2
|
x2
|
=
|
lim
x → 0
|
(x2
+ 2x – 1) = –1
|
|
❤
|
PEMBAHASAN:
|
lim
x → –t
|
x2 – t2
|
x + t
|
=
|
lim
x → –t
|
(x
+ t)(x – t)
|
x + t
|
=
|
lim
x → –t
|
(x
– t)
|
|
=
|
–t – t
= –2t
|
❤
|
PEMBAHASAN:
|
lim
x → 3
|
x2 – 9
|
x – 3
|
=
|
lim
x → 3
|
(x
– 3)(x + 3)
|
x – 3
|
=
|
lim
x → 3
|
(x
+ 3)
|
|
=
|
3 + 3 = 6
|
❤
|
PEMBAHASAN:
|
lim
t → 2
|
√[(t
+ 4)(t – 2)4]
|
(3x
– 6)2
|
=
|
lim
t → 2
|
(t
– 2)2 √(t + 4)
|
9(t
– 3)2
|
=
|
lim
t → 2
|
√(t
+ 4)
|
9
|
=
|
√(2
+ 4)
|
9
|
=
|
√6
|
9
|
❤
|
PEMBAHASAN:
|
lim
t → 7+
|
√(t
– 7)3
|
t – 7
|
=
|
lim
t → 7+
|
(t
– 7) √(t – 7)
|
(t
– 7)
|
=
|
lim
t → 7+
|
√(t
– 7)
|
|
=
|
√(7 – 7) = 0
|
❤
|
PEMBAHASAN:
|
lim
x → 3
|
x4 – 18x2
+ 81
|
(x
– 3)2
|
=
|
lim
x → 3
|
(x2
– 9)2
|
(x
– 3)2
|
=
|
lim
x → 3
|
(x
– 3)2 (x + 3)2
|
(x
– 3)2
|
=
|
lim
x → 3
|
(x
+ 3)2
|
|
=
|
(3 + 3)2
= 36
|
❤
|
PEMBAHASAN:
|
lim
u → 1
|
(3u
+ 4)(2u – 2)3
|
(u
– 1)2
|
lim
u → 1
|
8(3u
+ 4)(u – 1)3
|
(u
– 1)2
|
=
|
lim
u → 1
|
8(3u
+ 4)(u – 1)
|
|
=
|
8[3(1) + 4](1 –
1) = 0
|
❤
|
PEMBAHASAN:
|
lim
h → 0
|
(2
+ h)2 – 4
|
h
|
=
|
lim
h → 0
|
4
+ 4h + h2 – 4
|
h
|
=
|
lim
h → 0
|
h2 + 4h
|
h
|
=
|
lim
h → 0
|
(h
+ 4) = 4
|
|
❤
|
PEMBAHASAN:
|
lim
h → 0
|
(x
+ h)2 – x2
|
h
|
=
|
lim
h → 0
|
x2 + 2xh + h2
– x2
|
h
|
=
|
lim
h → 0
|
h2 + 2xh
|
h
|
=
|
lim
h → 0
|
(h
+ 2x) = 2x
|
|
BACA JUGA:
|
|
In Problems 19-28, use a calculator to find the indicated limit. Use a graphing calculator to plot the function near the limit point.
❤
|
PEMBAHASAN:
|
x
|
(sin
x)/(2x)
|
1.
|
0.420735
|
0.1
|
0.499167
|
0.01
|
0.499992
|
0.001
|
0.49999992
|
|
|
–1.
|
0.420735
|
–0.1
|
0.499167
|
–0.01
|
0.499992
|
–0.001
|
0.49999992
|
lim
x → 0
|
sin
x
|
=
|
0.5
|
2x
|
❤
|
PEMBAHASAN:
|
t
|
(1
– cos t)/(2t)
|
1.
|
0.229849
|
0.1
|
0.0249792
|
0.01
|
0.00249998
|
0.001
|
0.00024999998
|
|
|
–1.
|
–0.229849
|
–0.1
|
–0.0249792
|
–0.01
|
–0.00249998
|
–0.001
|
–0.00024999998
|
lim
t → 0
|
1
– cos t
|
=
|
0
|
2t
|
❤
|
PEMBAHASAN:
|
x
|
(x
– sin x)2/(x)2
|
1.
|
0.0251314
|
0.1
|
2.775 × 10−6
|
0.01
|
2.77775 × 10−10
|
0.001
|
2.77778 × 10−14
|
|
|
–1.
|
0.0251314
|
–0.1
|
2.775 × 10−6
|
–0.01
|
2.77775 × 10−10
|
–0.001
|
2.77778 × 10−14
|
lim
x → 0
|
(x
– sin x)2
|
=
|
0
|
x2
|
❤
|
PEMBAHASAN:
|
x
|
(1
– cos x)2/(x)2
|
1.
|
0.211322
|
0.1
|
0.00249584
|
0.01
|
0.0000249996
|
0.001
|
2.5 × 10−7
|
|
|
–1.
|
0.211322
|
–0.1
|
0.00249584
|
–0.01
|
0.0000249996
|
–0.001
|
2.5 × 10−7
|
lim
x → 0
|
(1
– cos x)2
|
=
|
0
|
x2
|
❤
|
PEMBAHASAN:
|
t
|
(t2 – 1)/(sin
(t – 1))
|
2.
|
3.56519
|
1.1
|
2.1035
|
1.01
|
2.01003
|
1.001
|
2.001
|
|
|
0
|
1.1884
|
0.9
|
1.90317
|
0.99
|
1.99003
|
0.999
|
1.999
|
lim
t → 1
|
t2 – 1
|
=
|
2
|
sin
(t – 1)
|
❤
|
PEMBAHASAN:
|
x
|
(x
– sin (x – 3) – 3)/(x – 3)
|
4.
|
0.158529
|
3.1
|
0.00166583
|
3.01
|
0.0000166666
|
3.001
|
1.66667 × 10−7
|
|
|
2.
|
0.158529
|
2.9
|
0.00166583
|
2.99
|
0.0000166666
|
2.999
|
1.66667 × 10−7
|
lim
x → 3
|
x – sin (x
– 3) – 3
|
=
|
0
|
x – 3
|
❤
|
PEMBAHASAN:
|
x
|
(1
+ sin (x – 3π/2))/(x
– π)
|
1. + π
|
0.4597
|
0.1 + π
|
0.0500
|
0.01 + π
|
0.0050
|
0.001 + π
|
0.0005
|
|
|
–1. + π
|
–0.4597
|
–0.1 + π
|
–0.0500
|
–0.01 + π
|
–0.0050
|
–0.001 + π
|
–0.0005
|
lim
x → π
|
1
+ sin (x – 3π/2)
|
=
|
0
|
x – π
|
❤
|
PEMBAHASAN:
|
t
|
(1
– cot t)/(1/t)
|
1.
|
0.357907
|
0.1
|
–0.896664
|
0.01
|
–0.989967
|
0.001
|
–0.999
|
|
|
–1.
|
–1.64209
|
–0.1
|
–1.09666
|
–0.01
|
–1.00997
|
–0.001
|
–1.001
|
lim
t → 0
|
1
– cot t
|
=
|
–1
|
1/t
|
❤
|
PEMBAHASAN:
|
x
|
(x
– π/4)^2/(tan
x – 1)^2
|
1. + π/4
|
0.0320244
|
0.1 + π/4
|
0.201002
|
0.01 + π/4
|
0.245009
|
0.001 + π/4
|
0.2495
|
|
|
–1. + π/4
|
0.674117
|
–0.1 + π/4
|
0.300668
|
–0.01 + π/4
|
0.255008
|
–0.001 + π/4
|
0.2505
|
lim
x → π/4
|
(x
– π/4)2
|
=
|
0.25
|
(tan
x – 1)2
|
❤
|
PEMBAHASAN:
|
u
|
(2
– 2 sin u)/(3u)
|
1. + π/2
|
0.11921
|
0.1 + π/2
|
0.00199339
|
0.01 + π/2
|
0.0000210862
|
0.001 + π/2
|
2.12072 × 10−7
|
|
|
–1. + π/2
|
0.536908
|
–0.1 + π/2
|
0.00226446
|
–0.01 + π/2
|
0.0000213564
|
–0.001 + π/2
|
2.12342 × 10−7
|
lim
u → π/2
|
2
– 2 sin u
|
=
|
0
|
3u
|
BACA JUGA:
|
|
Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 1 - 1.1 Introduction to Limit - Number 1 – 28. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment