CHAPTER 0 PRELIMINARIES
SECTION 0.7 Trigonometric Functions
Problem Set 0.7, Number 1 – 31.
- Convert the following degree measures to radians (leave π in your answer).
- Convert the following radian measures to degrees.
- Convert the following degree measures to radians (1° = π/180 ≈ 1.7453 × 10–2 radian).
- Convert the following radian measures to degrees (1 radian = 180/π ≈ 57.296 degrees).
- Calculate (be sure that your calculator is in radian or degree mode as neede).
- Calculate.
- Calculate.
- Verify the values of sin t and cos t in the table used to construct Figure 6.
- Evaluate without using a calculator.
- Evaluate without using a calculator.
- Verify that the following are identities (See Example6).
- Verify that the following are identities (See Example6).
- Verify the following are identities.
- Sketch the graphs of the following on [–π, 2π].
- Sketch the graphs of the following on [–π, 2π].
- y = 3 cos (x/2)
- y = 2 sin 2x
- y = tan x
- y = 2 + (1/6) cot 2x
- y = 3 + sec (x – π)
- y = 21 + 7 sin (2x + 3)
- y = 3 cos (x – (π/2)) – 1
- y = tan (2x – (π/3))
- Which of the following represent the same graph? Check your result analytically using trigonometric identities.
- Which of the following are odd functions? Even functions? Neither?
- Which of the following are odd functions? Even functions? Neither?
- cos2 (π/3)
- sin2 (π/6)
- sin3 (π/6)
- cos2 (π/12)
- sin2 (π/8)
(a)
|
30°
|
(b)
|
45°
|
(c)
|
–60°
|
(d)
|
240°
|
(e)
|
–370°
|
(f)
|
10°
|
💬 SOLUTION:
(a)
|
|
30
|
(
|
π
|
)
|
=
|
π
|
180
|
6
|
(b)
|
|
45
|
(
|
π
|
)
|
=
|
π
|
180
|
4
|
(c)
|
|
–60
|
(
|
π
|
)
|
=
|
–
|
π
|
180
|
3
|
(d)
|
|
240
|
(
|
π
|
)
|
=
|
4π
|
180
|
3
|
(e)
|
|
–370
|
(
|
π
|
)
|
=
|
–
|
37π
|
180
|
180
|
(f)
|
|
10
|
(
|
π
|
)
|
=
|
π
|
180
|
18
|
(a)
|
(7/6) π
|
(b)
|
(3/4) π
|
(c)
|
–(1/3) π
|
(d)
|
(4/3) π
|
(e)
|
–(35/18) π
|
(f)
|
(3/18) π
|
💬 SOLUTION:
(a)
|
|
7
|
π
|
(
|
180
|
)
|
=
|
210°
|
6
|
π
|
(b)
|
|
3
|
π
|
(
|
180
|
)
|
=
|
135°
|
4
|
π
|
(c)
|
|
–
|
1
|
π
|
(
|
180
|
)
|
=
|
–60°
|
3
|
π
|
(d)
|
|
4
|
π
|
(
|
180
|
)
|
=
|
240°
|
3
|
π
|
(e)
|
|
–
|
35
|
π
|
(
|
180
|
)
|
=
|
–350°
|
18
|
π
|
(f)
|
|
3
|
π
|
(
|
180
|
)
|
=
|
30°
|
18
|
π
|
(a)
|
33.3°
|
(b)
|
46°
|
(c)
|
–66.6°
|
(d)
|
240.11°
|
(e)
|
–369°
|
(f)
|
11°
|
💬 SOLUTION:
(a)
|
|
33.3
|
(
|
π
|
)
|
≈
|
0.5812
|
180
|
(b)
|
|
46
|
(
|
π
|
)
|
≈
|
0.8029
|
180
|
(c)
|
|
–66.6
|
(
|
π
|
)
|
≈
|
–1.1624
|
180
|
(d)
|
|
240.11
|
(
|
π
|
)
|
≈
|
4.1907
|
180
|
(e)
|
|
–369
|
(
|
π
|
)
|
≈
|
–6.4403
|
180
|
(f)
|
|
11
|
(
|
π
|
)
|
≈
|
0.1920
|
180
|
(a)
|
3.141
|
(b)
|
6.28
|
(c)
|
5.00
|
(d)
|
0.001
|
(e)
|
–0.1
|
(f)
|
36.0
|
💬 SOLUTION:
(a)
|
|
3.141
|
(
|
180
|
)
|
≈
|
180°
|
π
|
(b)
|
|
6.28
|
(
|
180
|
)
|
≈
|
359.8°
|
π
|
(c)
|
|
5.00
|
(
|
180
|
)
|
≈
|
286.5°
|
π
|
(d)
|
|
0.001
|
(
|
180
|
)
|
≈
|
0.057°
|
π
|
(e)
|
|
–0.1
|
(
|
180
|
)
|
≈
|
–5.73°
|
π
|
(f)
|
|
36.0
|
(
|
180
|
)
|
≈
|
2062.6°
|
π
|
(a)
|
|
|
56.4 tan 34.2°
|
sin 34.1°
|
(b)
|
|
|
5.34 tan 21.3°
|
sin 3.1° + cot 23.5°
|
(c)
|
tan 0.452
|
(d)
|
sin (–0.361)
|
💬 SOLUTION:
(a)
|
|
56.4 tan 34.2°
|
≈
|
68.37
|
sin 34.1°
|
(b)
|
|
5.34 tan 21.3°
|
≈
|
0.8845
|
sin 3.1° + cot 23.5°
|
(c)
|
tan (0.452) ≈ 0.4855
|
(d)
|
sin (–0.361) ≈ –0.3532
|
(a)
|
|
|
234.1 sin 1.56
|
cos 0.34
|
(b)
|
sin2 2.51 + √(cos 0.51)
|
💬 SOLUTION:
(a)
|
|
|
234.1 sin (1.56)
|
≈
|
248.3
|
cos (0.34)
|
(b)
|
|
|
sin2 2.51 + √(cos 0.51) ≈ 1.2828
|
(a)
|
|
|
56.3 tan 34.2°
|
sin 56.1°
|
(b)
|
|
|
(
|
sin 35°
|
)3
|
sin 26° + cos 26°
|
💬 SOLUTION:
(a)
|
|
|
56.3 tan 34.2°
|
≈
|
46.097
|
sin 56.1°
|
(b)
|
|
|
(
|
sin 35°
|
)3
|
≈
|
0.0789
|
sin 26° + cos 26°
|
💬 SOLUTION:
Referring to Figure 2, it is clear that sin 0 = 0 and cos 0 = 1. If the angle is π/6, then the triangle in the figure below is equilateral. Thus, |PQ| = 1/2 |OP| = 1/2. This implies that sin π/6 = 1/2. By the Pythagorean Identity, cos2 (π/6) = 1 – sin2 (π/6) = 1 – (1/2)2 = 3/4.
Thus,
cos (π/6) = √3/2. The results sin (π/4) = cos (π/4) = √2/2 were derived in the text. If the angle is π/3 then the triangle in the figure below is equilateral. Thus cos (π/3) = 1/2 and by the Pythagorean Identity, sin (π/3) = √3/2.
Referring to Figure 2, it is clear that sin (π/2) = 1 and cos (π/2) = 0. The rest of the values are obtained using the same kind of reasoning in the second quadrant.
BACA JUGA:
|
|
(a)
|
tan π/6
|
(b)
|
sec π
|
(c)
|
sec 3π/4
|
(d)
|
cot π/4
|
(e)
|
sec 3π/4
|
(f)
|
tan (– π/4)
|
💬 SOLUTION:
(a)
|
tan (π/6) = [sin (π/6)]/[cos(π/6)]
= √3/3
|
(b)
|
sec (π) = 1/cos (π) = –1
|
(c)
|
sec (3π/4)
= 1/cos (3π/4)
= –√2
|
(d)
|
csc (π/2) =
1/sin (π/2)
= 1
|
(e)
|
cot (π/4) =
[cos (π/4)]/[sin (π/4)]
= 1
|
(f)
|
tan (–π/4) =
[sin (–π/4)]/[cos (–π/4)]
= –1
|
(a)
|
tan π/3
|
(b)
|
sec π/3
|
(c)
|
cot π/3
|
(d)
|
csc π/4
|
(e)
|
tan (– π/6)
|
(f)
|
cos (– π/3)
|
💬 SOLUTION:
(a)
|
tan (π/3) = [sin (π/3)]/[cos
(π/3)] = √3
|
(b)
|
sec (π/3) = 1/cos (π/3)
= 2
|
(c)
|
cot (π/3) =
[cos (π/3)]/[sin
(π/3)] = √3/3
|
(d)
|
csc (π/4) =
1/sin (π/4)
= √2
|
(e)
|
tan (–π/6)
= [sin (–π/6)]/cos (–π/6)
= –(√3/3)
|
(f)
|
cos (–π/3)
= 1/2
|
(a)
|
(1 + sin z)(1 – sin z) = 1/sec2
z
|
(b)
|
(sec t – 1)(sec t + 1) = tan2
t
|
(c)
|
sec t –
sin t tan t = cos t
|
(d)
|
(sec2 t – 1)/(sec2 t)
= sin2 t
|
💬 SOLUTION:
(a)
|
(1 + sin z)(1 – sin z) = 1 –
sin2 z
|
|
= cos2 z
|
|
= 1/sec2 z
|
(b)
|
(sec t – 1)(sec t + 1) = sec2
t – 1
|
|
= tan2 t
|
(c)
|
sec t – sin
t tan t = [1/cos t]/[sin2 t/cos t]
|
|
= [1 – sin2
t]/[cos t]
|
|
= [cos2
t]/[cos t]
|
|
= cos t
|
(d)
|
[sec2
t – 1]/[sec2 t] = [tan2 t]/[sec2
t]
|
|
= [(sin2
t)/(cos2 t)]/[(1)/(cos2 t)]
|
|
= sin2
t
|
(a)
|
sin2 v + [(1)/(sec2
v)] = 1
|
(b)
|
cos 3t = 4 cos3 t –
3 cos t
Hint:
Use a double-angle identity.
|
(c)
|
sin 4x =
8 sin x cos3 x – 4 sin x cos x
Hint: Use a
double-angle identity twice.
|
(d)
|
(1 + cos θ)(1 – cos θ) = sin2 θ
|
💬 SOLUTION:
(a)
|
sin2 v + [1/sec2
v]
|
|
= sin2 v + cos2
v
|
|
= 1
|
(b)
|
cos 3t = cos (2t + t)
= cos 2t cos t – sin 2t sin t
|
|
= (2 cos2 t – 1) cos t
– 2 sin2 t cos t
|
|
= 2 cos3 t – cos t
– 2(1 – cos2 t) cos t
|
|
= 2 cos3 t – cos t
– 2 cos t + 2 cos3 t
|
|
= 4 cos3 t – 3 cos t
|
(c)
|
sin 4x =
sin [2(2x)] = 2 sin 2x cos 2x
|
|
= 2(2 sin x
cos x)(2 cos2 x – 1)
|
|
= 2(4 sin x
cos3 x – 2 sin x cos x)
|
|
= 8 sin x
cos3 x – 4 sin x cos x
|
(d)
|
(1 + cos θ)(1
– cos θ) = 1 – cos2 θ = sin2 θ
|
(a)
|
[(sin u)/(scs u)] + [(cos u)/(sec
u)] = 1
|
(b)
|
(1 – cos2 x)(1 + cot2
x) = 1
|
(c)
|
sin t
(csc t – sin t) = cos2 t
|
(d)
|
(1 – csc2 t)/(csc2 t)
= (–1)/(sec2 t)
|
💬 SOLUTION:
(a)
|
[(sin u)/(csc u)] + [(cos u)/(sec
u)]
|
|
= sin2 u + cos2
u
|
|
= 1
|
(b)
|
(1 – cos2 x)(1 + cot2
x)
|
|
= (sin2 x)(csc2
x)
|
|
= sin2 x [1/sin2
x]
|
|
= 1
|
(c)
|
sin t (csc
t – sin t)
|
|
= sin t [(1/sin
t) – sin t]
|
|
= 1 – sin2
t
|
|
= cos2
t
|
(d)
|
[1 – csc2
t]/[csc2 t]
|
|
= – [cot2
t]/[csc2 t]
|
|
= – [(cos2
t)/(sin2 t)]/[(1)/(sin2 t)]
|
|
= – cos2
t
|
|
= – 1/sec2
t
|
(a)
|
y = sin
2x
|
(b)
|
y = 2
sin t
|
(c)
|
y = cos (x
– π/4)
|
(d)
|
y = sec t
|
💬 SOLUTION:
(a)
|
y = sin 2x
|
(b)
|
y = 2 sin t
|
(c)
|
y = cos (x – (π/4))
|
(d)
|
y = sec t
|
(a)
|
y = csc t
|
(b)
|
y = 2 cos
t
|
(c)
|
y = cos 3t
|
(d)
|
y = cos (t + π/3)
|
💬 SOLUTION:
(a)
|
y = csc t
|
(b)
|
y = 2 cos t
|
(c)
|
y = cos 3t
|
(d)
|
y = cos (t + (π/3))
|
BACA JUGA:
|
|
Determine the period, amplitude, and shifts (both horizontal and vertical) and draw a graph over the interval –5 ≤ x ≤ 5 for the functions listed in Problems 16–23.
💬 SOLUTION:
y = 3 cos (x/2)
|
Period = 4π, amplitude = 3
|
💬 SOLUTION:
y = 2
sin 2x
|
Period = π, amplitude = 2
|
💬 SOLUTION:
y = tan x
|
Period = π
|
💬 SOLUTION:
y = 2 + (1/6) cot (2x)
|
Period = π/2, shift: 2 units up
|
💬 SOLUTION:
y = 3 + sec (x – π)
|
Period = 2π, shift: 3 units up, π units right
|
💬 SOLUTION:
y = 21 + 7 sin (2x + 3)
|
Period = π, amplitude = 7, shift: 21 units up, 3/2 units left
|
💬 SOLUTION:
y = 3 cos (x – (π/2)) – 1
|
Period = 2π, amplitude = 3, shift: π/2 units right and 1 unit down
|
💬 SOLUTION:
y = tan (2x – (π/3))
|
Period = π/2, shift: π/2 units right
|
BACA JUGA:
|
|
(a)
|
y = sin (x
+ (π/2))
|
(b)
|
y = cos (x
+ (π/2))
|
(c)
|
y = –sin
(x + π)
|
(d)
|
y = cos (x
– π)
|
(e)
|
y = –sin
(π – x)
|
(f)
|
y = cos (x
– (π/2))
|
(g)
|
y = –cos
(π – x)
|
(h)
|
y = sin (x
– (π/2))
|
💬 SOLUTION:
(a) and (g)
|
y = sin
(x + (π/2))
|
y = cos x
|
y = –cos
(π – x)
|
(b) and (e)
|
y = cos
(x + (π/2))
|
y = sin
(x + π)
|
y = –sin
(π – x)
|
(c) and (f)
|
y = cos
(x – (π/2))
|
y = sin x
|
y = –sin
(x + π)
|
(d) and (h)
|
y = sin
(x – (π/2))
|
y = cos
(x + π)
|
y = cos
(x – π)
|
(a)
|
t sin t
|
(b)
|
sin2 t
|
(c)
|
csc t
|
(d)
|
|sin t|
|
(e)
|
sin (cos t)
|
(f)
|
x + sin x
|
💬 SOLUTION:
(a)
|
–t sin (–t) = t sin t;
even
|
(b)
|
sin2 (–t) = sin2
t; even
|
(c)
|
csc (–t) = [1]/[sin (–t)] = –csc
t; odd
|
(d)
|
|sin (–t)| = |–sin t| = |sin t|;
even
|
(e)
|
sin (cos (–t)) = sin (cos t);
even
|
(f)
|
–x + sin (–x) = –x –
sin x = –(x + sin x); odd
|
(a)
|
cot t + sin t
|
(b)
|
sin3 t
|
(c)
|
sec t
|
(d)
|
√(sin4 t)
|
(e)
|
cos (sin t)
|
(f)
|
x2 + sin x
|
💬 SOLUTION:
(a)
|
cot (–t) + sin (–t)
|
|
= – cot t – sin t
|
|
= – (cot t + sin t); odd
|
(b)
|
sin3 (–t) = – sin3
t; odd
|
(c)
|
sec (–t) = [1]/[cos (–t)
|
|
= sec t; even
|
(d)
|
√(sin4 (–t)) = √(sin4
t); even
|
(e)
|
cos (sin (–t))
|
|
= cos (– sin t)
|
|
= cos (sin t); even
|
(f)
|
(–x2) + sin (–x) =
x2 – sin x; neither
|
Find the exact values in Problems 27–31. Hint: Half-angle identities may be helpful.
💬 SOLUTION:
cos2 (π/3)
|
= [cos (π/3)]2
|
= (1/2)2
|
= 1/4
|
💬 SOLUTION:
sin2 (π/6)
|
= [sin (π/6)]2
|
= (1/2)2
|
= 1/4
|
💬 SOLUTION:
sin3 (π/6)
|
= [cos (π/6)]3
|
= (1/2)3
|
= 1/8
|
💬 SOLUTION:
cos2 (π/12)
|
= [1 + cos 2 (π/12)]/[2]
|
= [1 + cos (π/6)]/[2]
|
= [1 + ((√3)/2)]/[2]
|
= [2 + √3]/[4]
|
💬 SOLUTION:
sin2 (π/8)
|
= [1 – cos 2 (π/8)]/[2]
|
= [1 – cos (π/4)]/[2]
|
= [1 – ((√2)/2)]/[2]
|
= [2 – √2]/[4]
|
BACA JUGA:
|
|
Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 0 - 0.7 Number 1 – 31. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆
No comments:
Post a Comment