CHAPTER 1 LIMITS
SECTION 1.5 Limits at Infinity; Infinite Limits
Problem Set 1.5, Number 43 – 71.
- f(x) =3x + 1
 - f(x) =3(x + 1)2
 - F(x) =2xx – 3
 - F(x) =39 – x2
 - g(x) =142x2 + 7
 - g(x) =2x√(x2 + 5)
 - The line y = ax + b is called an oblique asymptote to the graph of y = f(x) if either
 - Find the oblique asymptote for
 - Using the symbols M and δ, give precise definitions of each expression.
 - Using the symbols M and N, give precise definitions of each expression.
 - Give a rigorous proof that if limx→∞ f(x) = A and limx→∞ g(x) = B, then
 - We have given meaning to limx→A f(x) for A = a, a–, a+, –∞, ∞. Moreover, in each case, this limit may be L (finite), –∞, ∞, or may fail to exist in any sense. Make a table illustrating each of the 20 possible cases.
 - Find each of the following limits or indicate that it does not exist even in the infinite sense.
 - Einstein’s Special Theory of Relativity says that the mass m(v) of an object is related to its velocity v by
 - lim3x2 + x + 1x → ∞2x2 – 1
 - lim√ (2x2 – 3x)x → –∞5x2 + 1
 - lim[√(2x2 + 3x) – √(2x2 – 5)]x → –∞
 - lim2x + 1x → ∞√(3x2 + 1)
 - lim(1 +1)10x → ∞x
 - lim(1 +1)xx → ∞x
 - lim(1 +1)x2x → ∞x
 - lim(1 +1)sin xx → ∞x
 - limsin |x – 3|x → 3–x – 3
 - limsin |x – 3|x → 3–tan (x – 3)
 - limcos (x – 3)x → 3–x – 3
 - limcos xx → (π/2)+x – π/2
 - lim(1 + √x)1/√xx → 0+
 - lim(1 + √x)1/xx → 0+
 - lim(1 + √x)xx → 0+
 
In Problems 43-48, find the horizontal and vertical asymptotes for the graphs of the indicated functions. Then sketch their graphs.
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   lim 
   | 
  
   [f(x)
  – (ax + b)] 
   | 
  
   = 0 
   | 
 
| 
   x → ∞ 
   | 
  
   | 
  
   | 
 
| 
   or 
   | 
 ||
| 
   lim 
   | 
  
   [f(x)
  – (ax + b)] 
   | 
  
   = 0 
   | 
 
| 
   x → –∞ 
   | 
  
   | 
  
   | 
 
Find the oblique asymptote for
| 
   f(x) = 
   | 
  
   2x4
  + 3x3 – 2x – 4 
   | 
 
| 
   x3 – 1 
   | 
 
Hint: Begin by dividing the denominator into the numerator.
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   f(x) = 
   | 
  
   3x3
  + 4x2 – x + 1 
   | 
 
| 
   x2 + 1 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   (a) 
   | 
  
   lim 
   | 
  
   f(x) = – ∞ 
   | 
 
| 
   x → c+ 
   | 
  
   | 
 |
| 
   (b) 
   | 
  
   lim 
   | 
  
   f(x) = ∞ 
   | 
 
| 
   x → c- 
   | 
  
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   (a) 
   | 
  
   lim 
   | 
  
   f(x) = ∞ 
   | 
 
| 
   x → ∞ 
   | 
  
   | 
 |
| 
   (b) 
   | 
  
   lim 
   | 
  
   f(x) = ∞ 
   | 
 
| 
   x → –∞ 
   | 
  
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   lim 
   | 
  
   [f(x)
  + g(x)] = A + B 
   | 
 
| 
   x → ∞ 
   | 
  
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   BACA JUGA: 
   | 
  |
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   (a) 
   | 
  
   lim 
   | 
  
   sin
  x 
   | 
 
| 
   x → ∞ 
   | 
  
   | 
 |
| 
   (b) 
   | 
  
   lim 
   | 
  
   sin
  (1/x) 
   | 
 
| 
   x → ∞ 
   | 
  
   | 
 |
| 
   (c) 
   | 
  
   lim 
   | 
  
   x sin (1/x) 
   | 
 
| 
   x → ∞ 
   | 
  
   | 
 |
| 
   (d) 
   | 
  
   lim 
   | 
  
   x3/2 sin (1/x) 
   | 
 
| 
   x → ∞ 
   | 
  
   | 
 |
| 
   (e) 
   | 
  
   lim 
   | 
  
   x–1/2 sin x 
   | 
 
| 
   x → ∞ 
   | 
  
   | 
 |
| 
   (f) 
   | 
  
   lim 
   | 
  
   sin
  ([π/6] + [1/x]) 
   | 
 
| 
   x → ∞ 
   | 
  
   | 
 |
| 
   (g) 
   | 
  
   lim 
   | 
  
   sin
  (x + [1/x]) 
   | 
 
| 
   x → ∞ 
   | 
  
   | 
 |
| 
   (h) 
   | 
  
   lim 
   | 
  
   [sin
  (x + [1/x]) – sin x] 
   | 
 
| 
   x → ∞ 
   | 
  
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   m(v) = 
   | 
  
   m0 
   | 
 
| 
   √1 – v2/c2 
   | 
 
Here m0 is the rest mass and c is the velocity of light. What is limv→c– m(v)?
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   BACA JUGA: 
   | 
  |
Use a computer or a graphing calculator to find the limits in Problems 57-64. Begin by plotting the function in an appropriate window.
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
Find the one-sided limits in Problems 65-71. Begin by plotting the function in an appropriate window. Your computer may indicate that some of these limits do not exist, but, if so, you should be able to interpret the answer as either ∞ or –∞.
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   ❤ 
   | 
  
   PEMBAHASAN: 
   | 
 
| 
   BACA JUGA: 
   | 
  |
Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 1 - 1.5 Limits at Infinity; Infinite Limits - Number 43 – 71. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐 
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆 


















































No comments:
Post a Comment