Kunci Jawaban dan Pembahasan Soal || Buku Calculus 9th Purcell Chapter 1 - 1.5 Number 43 – 71

Pembahasan Soal Buku Calculus 9th Purcell Chapter 1 Section 1.1

CHAPTER 1 LIMITS

SECTION 1.5 Limits at Infinity; Infinite Limits


Problem Set 1.5, Number 43 – 71.

Calculus 9th Purcell Chapter 1 - 1.5

    In Problems 43-48, find the horizontal and vertical asymptotes for the graphs of the indicated functions. Then sketch their graphs.
  1. f(x) =
    3
    x + 1
  2. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5


  3. f(x) =
    3
    (x + 1)2
  4. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5


  5. F(x) =
    2x
    x – 3
  6. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5


  7. F(x) =
    3
    9 – x2
  8. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5


  9. g(x) =
    14
    2x2 + 7
  10. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5


  11. g(x) =
    2x
    √(x2 + 5)
  12. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5


  13. The line y = ax + b is called an oblique asymptote to the graph of y = f(x) if either
  14. lim
    [f(x) – (ax + b)]
    = 0
    x
     
     
    or
    lim
    [f(x) – (ax + b)]
    = 0
    x → –
     
     
    Find the oblique asymptote for
    f(x) =
    2x4 + 3x3 – 2x – 4
    x3 – 1
    Hint: Begin by dividing the denominator into the numerator.
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  15. Find the oblique asymptote for
  16. f(x) =
    3x3 + 4x2x + 1
    x2 + 1
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  17. Using the symbols M and δ, give precise definitions of each expression.
  18. (a)
    lim
    f(x) = – ∞
    xc+
     
    (b)
    lim
    f(x) = ∞
    xc-
     
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  19. Using the symbols M and N, give precise definitions of each expression.
  20. (a)
    lim
    f(x) = ∞
    x
     
    (b)
    lim
    f(x) = ∞
    x–∞
     
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  21. Give a rigorous proof that if limx→∞ f(x) = A and limx→∞ g(x) = B, then
  22. lim
    [f(x) + g(x)] = A + B
    x
     
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


    Semoga Bermanfaat 😁

  23. We have given meaning to limxA f(x) for A = a, a, a+, –∞, ∞. Moreover, in each case, this limit may be L (finite), –∞, ∞, or may fail to exist in any sense. Make a table illustrating each of the 20 possible cases.
  24. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  25. Find each of the following limits or indicate that it does not exist even in the infinite sense.
  26. (a)
    lim
    sin x
    x
     
    (b)
    lim
    sin (1/x)
    x
     
    (c)
    lim
    x sin (1/x)
    x
     
    (d)
    lim
    x3/2 sin (1/x)
    x
     
    (e)
    lim
    x–1/2 sin x
    x
     
    (f)
    lim
    sin ([π/6] + [1/x])
    x
     
    (g)
    lim
    sin (x + [1/x])
    x
     
    (h)
    lim
    [sin (x + [1/x]) – sin x]
    x
     
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5

    Calculus 9th Purcell Chapter 1 - 1.5


  27. Einstein’s Special Theory of Relativity says that the mass m(v) of an object is related to its velocity v by
  28. m(v) =
    m0
    1 – v2/c2
    Here m0 is the rest mass and c is the velocity of light. What is limvc m(v)?
    PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


    Semoga Bermanfaat 😁

    Use a computer or a graphing calculator to find the limits in Problems 57-64. Begin by plotting the function in an appropriate window.
  29. lim
    3x2 + x + 1
    x
    2x2 – 1
  30. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  31. lim
    (
    2x2 – 3x
    )
    x → –
    5x2 + 1
  32. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  33. lim
    [√(2x2 + 3x) – √(2x2 – 5)]
    x → –
     
  34. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  35. lim
    2x + 1
    x
    √(3x2 + 1)
  36. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  37. lim
     (
    1 +
    1
    )10
    x
    x
  38. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  39. lim
     (
    1 +
    1
    )x
    x
    x
  40. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  41. lim
     (
    1 +
    1
    )x2
    x
    x
  42. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  43. lim
     (
    1 +
    1
    )sin x
    x
    x
  44. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


    Find the one-sided limits in Problems 65-71. Begin by plotting the function in an appropriate window. Your computer may indicate that some of these limits do not exist, but, if so, you should be able to interpret the answer as either ∞ or –∞.
  45. lim
    sin |x – 3|
    x → 3
    x – 3
  46. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  47. lim
    sin |x – 3|
    x → 3
    tan (x – 3)
  48. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  49. lim
    cos (x – 3)
    x → 3
    x – 3
  50. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  51. lim
    cos x
    x → (π/2)+
    x – π/2
  52. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  53. lim
    (1 + √x)1/√x
    x → 0+
     
  54. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  55. lim
    (1 + √x)1/x
    x → 0+
     
  56. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


  57. lim
    (1 + √x)x
    x → 0+
     
  58. PEMBAHASAN:

    Calculus 9th Purcell Chapter 1 - 1.5


Semoga Bermanfaat 😁

Demikian soal serta penjelasan untuk Pembahasan Soal Buku Calculus 9th Purcell Chapter 1 - 1.5 Limits at Infinity; Infinite Limits - Number 43 – 71. Silahkan untuk berkunjung kembali dikarenakan akan selalu ada update terbaru 😊😄🙏. Silahkan juga untuk memilih dan mendiskusikan di tempat postingan ini di kolom komentar ya supaya semakin bagus diskusi pada setiap postingan. Diperbolehkan request di kolom komentar pada postingan ini tentang rangkuman atau catatan atau soal dan yang lain atau bagian hal yang lainnya, yang sekiranya belum ada di website ini. Terima kasih banyak sebelumnya 👍. Semoga bermanfaat dan berkah untuk kita semua. Amiiinnn 👐👐👐
Jangan lupa untuk 💏 SUBSCRIBE 👪 (Klik lonceng di bawah-kanan layar Anda) dan berikan komentar 💬 atau masukan serta share 👫 postingan ini ke teman-teman untuk berkembangnya https://www.bantalmateri.com/ ini 😀. Terima kasih dan semoga bermanfaat. 😋😆

Ahmad Qolfathiriyus Firdaus

We are bantalmateri.com that utilizes the internet and digital media in delivering material, questions and even the form of discussion. In the current generation, online learning methods (commonly called daring) are considered closer to students who are very integrated and difficult to separate from technology. The emergence of technology has also facilitated the implementation of schools even though students and educators alike have to adapt.

No comments:

Post a Comment